Skip to main content

Advertisement

Log in

Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Although reactive oxygen species mediated oxidative stress is a well-documented mechanism of aging, recent evidences indicate involvement of nitrosative stress in the same. As mitochondrial dysfunction is considered as one of the primary features of aging, the present study was designed to understand the involvement of nitrosative stress by studying the impact of a mitochondria-targeted antioxidant MitoQ, a peroxynitrite (ONOO) scavenger, on mitochondrial functions. Four groups of rats were included in this study: Group I: Young—6 months (-MitoQ), Group II: Aged—22 months (− MitoQ), Group III: Young—6 months (+ MitoQ), Group IV: Aged—22 months (+ MitoQ). The rats belonging to group III and IV were treated with oral administration of MitoQ (500 μM) daily through drinking water for 5 weeks. MitoQ efficiently suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein bound 3-nitrotyrosine. MitoQ normalized enhanced caspase 3 and 9 activities in aged rat brains and efficiently reversed ONOO mediated mitochondrial complex I and IV inhibition, restored mitochondrial ATP production and lowered mitochondrial membrane potential loss. To ascertain these findings, a mitochondrial in vitro model (iron/ascorbate) was used involving different free radical scavengers and anti-oxidants. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-l-arginine-methyl ester and superoxide dismutase establishing the predominancy of ONOO in the process compared to NO and O •−2 . These results clearly highlight the involvement of nitrosative stress in aging process with MitoQ having therapeutic potential to fight against ONOO mediated aging deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andorn AC, Britton RS, Bacon BR (1996) Ascorbate-stimulated lipid peroxidation in human brain is dependent on iron but not on hydroxyl radical. J Neurochem 67(2):717–722

    Article  PubMed  CAS  Google Scholar 

  • Annunziato L, Pannaccione A, Cataldi M, Secondo A, Castaldo P, Di Renzo G, Taglialatela M (2002) Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol Aging 23:819–834

    Article  PubMed  CAS  Google Scholar 

  • Barreiro E, Comtois AS, Mohammed S, Lands L, Hussain SNA (2002) Role of heme oxygenases in sepsis induced diaphragmatic contractile dysfunction and oxidative stress. Am J Physiol Lung Cell Mol Physiol 283:L476–L484

    Article  PubMed  CAS  Google Scholar 

  • Barreiro E, Gea J, Corominas JM, Hussain SNA (2003) Nitric oxide synthases and protein oxidation in the quadriceps femoris muscles of COPD patients. Am J Respir Cell Mol Biol 29:771–778

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol W (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Bo H, Kang W, Jiang N, Wang X, Zhang Y, Ji LL (2014) Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxid Med Cell Longev 2014:834502

    Article  PubMed  PubMed Central  Google Scholar 

  • Boveris A, Navarro A (2008) Brain mitochondrial dysfunction in aging. IUBMB Life 60(5):308–314

    Article  PubMed  CAS  Google Scholar 

  • Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411(2–3):351–369

    Article  PubMed  CAS  Google Scholar 

  • Brown GC, Borutaite V (2001) Nitric oxide, mitochondria and cell death. IUBMB Life 52:189–195

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty H, Ray SN, Chakrabarti S (2001) Lipid peroxidation associated protein damage in rat brain crude synaptosomal fraction mediated by iron and ascorbate. Neurochem Int 39(4):311–317

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty H, Sen P, Sur A, Chatterjee U, Chakrabarti S (2003) Age-related oxidative inactivation of Na+, K+-ATPase in rat brain crude synaptosomes. Exp Gerontol 38(6):705–710

    Article  PubMed  CAS  Google Scholar 

  • Clark JB, Bates TE, Boakye P, Kuimov A, Land JM (1997) Investigation of mitochondrial defects in brain and skeletal muscle. In: Turner AJ, Bachelard HS (eds) Neurochemistry: A practical approach. Oxford University Press Inc., New York, pp 151–174

    Google Scholar 

  • Cuzzocrea S, Zingarelli B, Hake P, Salzman AL, Szabó C (1998) Antiinflammatory effects of mercaptoethylguanidine, a combined inhibitor of nitric oxide synthase and peroxynitrite scavenger, in carrageenan-induced models of inflammation. Free Radic Biol Med 24:450–459

    Article  PubMed  CAS  Google Scholar 

  • Dashdorj A, Jyothi KR, Lim S, Jo A, Nguyen MN, Ha J, Yoon KS, Kim HJ, Park JH, Murphy MP, Kim SS (2013) Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. BMC Med 11:178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    Article  PubMed  CAS  Google Scholar 

  • Finsterer J (2009) Mitochondrial disorders, cognitive impairment and dementia. J Neurol Sci 283(1–2):143–148

    PubMed  CAS  Google Scholar 

  • Finsterer J (2012) Cognitive dysfunction in mitochondrial disorders. Acta Neurol Scand 126(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta MN, Cormio A, Pesce V, Lezza AMS, Cantatore P (1998) Aging and mitochondria. Biochimie 80:863–870

    Article  PubMed  CAS  Google Scholar 

  • Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RAJ, Murphy MP (2010) The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Genrikhs EE, Stelmashook EV, Popova OV, Kapay NA, Korshunova GA, Sumbatyan NV, Skrebitsky VG, Skulachev VP, Isaev NK (2015) Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-b-induced impairment of long-term potentiation in rat hippocampal slices. J Drug Target 23:347–352

    Article  PubMed  CAS  Google Scholar 

  • Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR (2014) Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 592:2549–2561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric-oxide mediated protein modifications. Am J Physiol 287:L262–L268

    CAS  Google Scholar 

  • Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322–328

    Article  PubMed  CAS  Google Scholar 

  • Habeeb AF (1972) Reaction of protein sulphydryl groups with Ellman’s reagent. Methods Enzymol 25:457–464

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Park JY, Ames BN (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines. Heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94(7):3064–3069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Hatefi Y (1978) Preparation and properties of NADH: ubiquinone oxidoreductase (complex I) E.C.1.6.5.3. Methods Enzymol 53:11–15

    Article  PubMed  CAS  Google Scholar 

  • Hays AM, Lantz RC, Witten ML (2003) Correlation between in vivo and in vitro pulmonary responses to jet propulsion fuel-8 using precision cut lung slices and a dynamic organ culture system. Toxicol Pathol 31:200–207

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    Article  PubMed  CAS  Google Scholar 

  • James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    Article  PubMed  CAS  Google Scholar 

  • James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP (2007) Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282:14708–14718

    Article  PubMed  CAS  Google Scholar 

  • Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17:1972–1974

    Article  PubMed  CAS  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RAJ, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski H, Janicka-Klos A, Brasun J, Elena Gaggelli E, Valensin D, Valensin G (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordin Chem Rev 253:2585–2665

    Article  CAS  Google Scholar 

  • Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Wei YH (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (1983) Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem 258(19):11828–11833

    PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Ljubuncic P, Gochman E, Reznick AZ (2010) Nitrosative stress in aging. Its importance and biological implications in NF-kB signaling. In: Bondy S, Maiese K (eds) Oxidative Stress in Applied Basic Research and Clinical Practice. Aging and Age-Related Disorders. Springer, Armstrong, pp 27–54

    Google Scholar 

  • Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF (2008) The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide peptidoglycan model of sepsis. Free Radic Biol Med 45:1559–1565

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Far AL, Randall RJ (1951) Protein measurement with Folin–Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maiti AK, Saha NC, More SS, Panigrahi AK, Paul G (2017) Neuroprotective efficacy of mitochondrial antioxidant MitoQ in suppressing peroxynitrite-mediated mitochondrial dysfunction inflicted by lead toxicity in the rat brain. Neurotox Res 31(3):358–372

    Article  PubMed  CAS  Google Scholar 

  • Maroz A, Anderson RF, Smith RA, Murphy MP (2009) Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. Free Radic Biol Med 46:105–109

    Article  PubMed  CAS  Google Scholar 

  • McKenzie M, Liolitsa D, Hanna MG (2004) Mitochondrial disease: mutations and mechanisms. Neurochem Res 29:589–600

    Article  PubMed  CAS  Google Scholar 

  • Moore H, Kelly T, Trenell M, Deary I, Turnbull D (2013) Gorman G (2013) Progressive cognitive difficulties in adult patients with mitochondrial disease. J Neurol Neurosurg Psychiatr 84:e2

    Article  Google Scholar 

  • Muthuswamy AD, Vedagiri K, Ganesan M, Chinnakannu P (2006) Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of l-camitine and d-l-alpba-lipoic acid. Clin Chim Acta 368:84–92

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3(1):35–40

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Oyewole AO, Birch-Machin MA (2015) Mitochondria—targeted antioxidants. FASEB J 29(12):4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Oyewole AO, Wilmot MC, Fowler M, Birch-Machin MA (2014) Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. FASEB J 28:485–494

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20:329–359

    Article  PubMed  Google Scholar 

  • Rehman A, Whiteman M, Halliwell B (1997) Scavenging of hydroxyl radicals but not of peroxynitrite by inhibitors and substrates of nitric oxide synthatases. Br J Pharmacol 122:1702–1706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sen T, Sen N, Tripathi G, Chatterjee U, Chakrabarti S (2006) Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria. Neurochem Int 49(1):20–27

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 100:5407–5412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM, Protect Study Group (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease modifying therapy in Parkinson’s disease. Mov Disord 25:1670–1674

    Article  PubMed  Google Scholar 

  • Spector R, Eells J (1984) Deoxynucleoside and vitamin transport into the central nervous system. Fed Proc 43(2):196–200

    PubMed  CAS  Google Scholar 

  • Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680

    Article  PubMed  CAS  Google Scholar 

  • Tarantini S, Valcarcel-Ares NM, Yabluchanskiy A, Fulop GA, Hertelendy P, Gautam T, Farkas E, Perz A, Rabinovitch PS, Sonntag WE, Csiszar A, Ungvari Z (2018) Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell. https://doi.org/10.1111/acel.12731

    Article  PubMed  PubMed Central  Google Scholar 

  • Ter Steege JC, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA (1998) Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 25:953–963

    Article  PubMed  Google Scholar 

  • Van der Vliet A, Eiserich JP, Shigenaga MK, Cross CE (1999) Reactive nitrogen species and tyrosine nitration in the respiratory tract. Am J Respir Crit Care Med 160:1–9

    Article  PubMed  Google Scholar 

  • Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  • Whittaker V (1972) The Synaptosome. In: Lajtha S (ed) Hand book of neurochemistry. Plenum Press, New York, pp 327–364

    Google Scholar 

Download references

Acknowledgements

The authors thank Department of Zoology, Jhargram Raj College, West Bengal, India and Department of Zoology, University of Burdwan, West Bengal, India, Pin-741235 for providing permission and laboratory assistance for smooth running of the project. Our sincere thanks to Department of Zoology, Jhargram Raj College, West Bengal, India for funding this project work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Kumar Maiti.

Ethics declarations

Conflict of interest

The authors of this paper declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, A.K., Spoorthi, B.C., Saha, N.C. et al. Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Biogerontology 19, 271–286 (2018). https://doi.org/10.1007/s10522-018-9756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-018-9756-6

Keywords

Navigation