, Volume 19, Issue 1, pp 13–21 | Cite as

Sexual activity affects the redox profile along the aging process in male rats

Research Article


The disposable soma theory postulates that aging might be the result of tradeoffs between early life reproduction and longevity, thereby involving the costs of reproduction in the expected lifespan. It is known that redox biochemistry plays a major role in these processes. To assess long term effects of reproduction, we analyzed redox rates and the testosterone levels at four different ages, and we performed a principal component analysis between redox measures of five different organs followed by a cluster analysis to determine correlations. The correlations among redox measures between organs were influenced more by reproduction than by age. Non breeders showed no alterations along the aging process up to 24 months, at which point differences were seen. Among breeders, however, we saw differences between three age clusters: cluster 1, 6 month old-animals; cluster 2, 12 month old animals, and cluster 3, 3 and 24 month-old animals. The results show differences between male breeders and non breeders, and provide evidence that oxidative stress plays a role in aging, and that reproduction alters the redox profiles of males.


Evolution Redox profile Principal component analysis Reproduction Aging Testosterone 



We thank Dr. H. Dewes for manuscript advice and Dr. E. Milner for language review and editing services. We also thank PVG Alabarse, FS Hackenhaar, AK Schueller, TM Machado, AC Almeida, G Ehrenbrink, MNC Silva, and JS Putti for their data collection and publications over the years.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10522_2017_9731_MOESM1_ESM.pdf (490 kb)
Supplementary material 1 (PDF 490 kb)
10522_2017_9731_MOESM2_ESM.pdf (101 kb)
Supplementary material 2 (PDF 101 kb)


  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev 2:433–459CrossRefGoogle Scholar
  2. Aksakal E, Akaras N, Tanboga IH, Kurt M, Halici Z, Odabasoglu F, Unal B (2011) Relationship between oxidative stress and cardiomyopathic changes in ovariectomized rats. Cardiology 119:235–241CrossRefPubMedGoogle Scholar
  3. Alabarse PVG et al (2011a) Oxidative stress in the brain of reproductive male rats during aging. Exp Gerontol 46:241–248. doi: 10.1016/j.exger.2010.10.009 CrossRefPubMedGoogle Scholar
  4. Alabarse PVG, Salomon TB, Medeiros TM, Hackenhaar FS, Schueller AK, Ehrenbrink G, Benfato MS (2011b) Oxidative stress in the kidney of reproductive male rats during aging. Exp Gerontol. doi: 10.1016/j.exger.2011.05.006 Google Scholar
  5. Asdell S, Doornenbal H, Joshi S, Sperling G (1967) The effects of sex steroid hormones upon longevity in rats. J Reprod Fertil 14:113–120CrossRefPubMedGoogle Scholar
  6. Barouki R (2006) Ageing free radicals and cellular stress. Med Sci 22:266–272Google Scholar
  7. Behling CS et al (2015) Treatment of oxidative stress in brain of ovariectomized rats with omega-3 and lipoic acid. Mol Nutr Food Res 59:2547–2555CrossRefPubMedGoogle Scholar
  8. Blount JD, Vitikainen EI, Stott I, Cant MA (2015) Oxidative shielding and the cost of reproduction. Biol Rev 91:483–497CrossRefPubMedGoogle Scholar
  9. Bonduriansky R, Maklakov A, Zajitschek F, Brooks R (2008) Sexual selection, sexual conflict and the evolution of ageing and life span. Funct Ecol 22:443–453. doi: 10.1111/j.1365-2435.2008.01417.x CrossRefGoogle Scholar
  10. Borrás C, Sastre J, García-Sala D, Lloret A, Pallardó FV, Viña J (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 34:546–552CrossRefPubMedGoogle Scholar
  11. Carnes BA, Riesch R, Schlupp I (2011) The delayed impact of parental age on offspring mortality in mice. J Gerontol A 67:351–357Google Scholar
  12. Carranza J, Alarcos S, Sánchez-Prieto CB, Valencia J, Mateos C (2004) Disposable-soma senescence mediated by sexual selection in an ungulate. Nature 432:215–218CrossRefPubMedGoogle Scholar
  13. Dowling DK, Simmons LW (2012) Ejaculate economics: testing the effects of male sexual history on the trade-off between sperm and immune function in Australian crickets. PLoS ONE 7:6. doi: 10.1371/journal.pone.0030172 CrossRefGoogle Scholar
  14. Ehrenbrink G, Hakenhaar F, Salomon T, Petrucci A, Sandri M, Benfato M (2006) Antioxidant enzymes activities and protein damage in rat brain of both sexes. Exp Gerontol 41:368–371. doi: 10.1016/j.exger.2006.02.007 CrossRefPubMedGoogle Scholar
  15. Gruber J, Schaffer S, Halliwell B (2007) The mitochondrial free radical theory of ageing—where do we stand? Front Biosci 13:6554–6579Google Scholar
  16. Hackenhaar FS, Salomon TB, Gil Alabarse PV, Ehrenbrink G, Benfato MS (2009) Pulmonary antioxidant defences and protein damage during the ageing process of both sexes. Cell Biochem Funct 27:378–382. doi: 10.1002/cbf.1585 CrossRefPubMedGoogle Scholar
  17. Hales DB, Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH (2005) Mitochondrial function in Leydig cell steroidogenesis. Testic Cell Dyn Endocr Signal 1061:120–134. doi: 10.1196/annals.1336.014 Google Scholar
  18. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, New YorkCrossRefGoogle Scholar
  19. Hamilton JB, Mestler GE (1969) Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J Gerontol 24:395–411CrossRefPubMedGoogle Scholar
  20. Harman D (1956) Aging—a theory based on free-radical and radiation-chemistry. J Gerontol 11:298–300CrossRefPubMedGoogle Scholar
  21. Jones DP (2015) Redox theory of aging. Redox Biol 5:71–79CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kessler MJ et al (2016) Long-term effects of castration on the skeleton of male rhesus monkeys (Macaca mulatta). Am J Primatol 78:152–166CrossRefPubMedGoogle Scholar
  24. Ketchen DJ Jr, Shook CL (1996) The application of cluster analysis in strategic management research: an analysis and critique. Strateg Manag J 17:441–458CrossRefGoogle Scholar
  25. Kirkwood TBL (2008) Understanding ageing from an evolutionary perspective. J Intern Med 263:117–127. doi: 10.1111/j.1365-2796.2007.01901.x CrossRefPubMedGoogle Scholar
  26. Kirkwood TBL (2011) Systems biology of ageing and longevity. Philos Trans R Soc B 366:64–70. doi: 10.1098/rstb.2010.0275 CrossRefGoogle Scholar
  27. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408:233–238CrossRefPubMedGoogle Scholar
  28. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Rad Biol Med 47:333–343. doi: 10.1016/j.freeradbiomed.2009.05.004 CrossRefPubMedGoogle Scholar
  29. Krinke GJ (2000) The laboratory rat, 1st edn. Academic Press, New YorkGoogle Scholar
  30. Lemaître J-F, Berger V, Bonenfant C, Douhard M, Gamelon M, Plard F, Gaillard J-M (2015) Early-late life trade-offs and the evolution of ageing in the wild. Proc R Soc B 1806:20150209CrossRefGoogle Scholar
  31. Lenart P, Bienertová-Vašků J (2017) Keeping up with the Red Queen: the pace of aging as an adaptation. Biogerontology 18:693–709CrossRefPubMedGoogle Scholar
  32. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lorenzini A, Stamato T, Sell C (2011) The disposable soma theory revisited: time as a resource in the theories of aging. Cell Cycle 10:3853–3856CrossRefPubMedGoogle Scholar
  34. Min K-J, Lee C-K, Park H-N (2012) The lifespan of Korean eunuchs. Curr Biol 22:R792–R793CrossRefPubMedGoogle Scholar
  35. Monaghan P, Charmantier A, Nussey DH, Ricklefs RE (2008) The evolutionary ecology of senescence. Funct Ecol 22:371–378. doi: 10.1111/j.1365-2435.2008.01418.x CrossRefGoogle Scholar
  36. Nussey DH, Kruuk LE, Morris A, Clutton-Brock TH (2007) Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr Biol 17:R1000–R1001CrossRefPubMedGoogle Scholar
  37. Olsson M, Madsen T, Shine R (1997) Is sperm really so cheap? Costs of reproduction in male adders, Vipera berus. Proc R Soc B 264:455–459CrossRefPubMedCentralGoogle Scholar
  38. Panti-May JA et al (2016) A two-year ecological study of Norway rats (Rattus norvegicus) in a Brazilian urban slum. PLoS ONE 11:e0152511CrossRefPubMedPubMedCentralGoogle Scholar
  39. Partridge L (2001) Evolutionary theories of ageing applied to long-lived organisms. Exp Gerontol 36:641–650CrossRefPubMedGoogle Scholar
  40. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2:559–572CrossRefGoogle Scholar
  41. Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW (2000) Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med 223:59–66CrossRefPubMedGoogle Scholar
  42. Reid J, Bignal E, Bignal S, McCracken D, Monaghan P (2003) Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. J Anim Ecol 72:765–776CrossRefGoogle Scholar
  43. Salomon TB, Hackenhaar FS, Almeida AC, Schueller AK, Gil Alabarse PV, Ehrenbrink G, Benfato MS (2013) Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol 48:940–946. doi: 10.1016/j.exger.2013.06.010 CrossRefPubMedGoogle Scholar
  44. Selman C, Blount JD, Nussey DH, Speakman JR (2012) Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol Evol 27:570–577CrossRefPubMedGoogle Scholar
  45. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4:624PubMedPubMedCentralGoogle Scholar
  46. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Ann Rev Biochem 86:715–748CrossRefPubMedGoogle Scholar
  47. Soliman A, De Sanctis V, Elalaily R (2014) Nutrition and pubertal development. Indian J Endocrinol Metab 18:S39PubMedPubMedCentralGoogle Scholar
  48. Tarín JJ, Gómez-Piquer V, García-Palomares S, García-Pérez MA, Cano A (2014) Absence of long-term effects of reproduction on longevity in the mouse model. Reprod Biol Endocrinol 12:84CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tong W-H, Rouault TA (2007) Metabolic regulation of citrate and iron by aconitases: role of iron-sulfur cluster biogenesis. Biometals 20:549–564. doi: 10.1007/s10534-006-9047-6 CrossRefPubMedGoogle Scholar
  50. Vina J, Borras C, Miquel J (2007) Theories of ageing. IUBMB Life 59:249CrossRefPubMedGoogle Scholar
  51. Wiersma P, Selman C, Speakman JR, Verhulst S (2004) Birds sacrifice oxidative protection for reproduction. Proc R Soc Lond B 271:S360–S363. doi: 10.1098/rsbl.2004.0171 CrossRefGoogle Scholar
  52. Wikelski M, Lynn S, Breuner C, Wingfield JC, Kenagy GJ (1999) Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J Physiol [A] 185:463–470CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Tiago Boeira Salomon
    • 1
    • 2
  • Mara Silveira Benfato
    • 1
    • 2
  1. 1.Laboratório de Estresse Oxidativo, Departamento de Biofísica, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM)-UFRGSPorto AlegreBrazil

Personalised recommendations