Methanol extracts from the resurrection plant Haberlea rhodopensis ameliorate cellular vitality in chronologically ageing Saccharomyces cerevisiae cells

Abstract

Bioactive substances that are found in many natural plant extracts are very important for the cosmetics, pharmaceutical industry and biotechnology. Especially interesting for these industries are the substances that possess cell revitalizing and anti-ageing properties. The endemic plant Haberlea rhodopensis is known for its ability to withstand drought and to revitalize when returned to optimal conditions after a long time in desiccation. It is a mere fact that this plant not only can completely resurrect from a dried state but is also able to bring back the natural biochemical compositions of its cells. As a result H. rhodopensis offers a wide field for investigation of the exact mechanisms of the revitalization process as well as broadens the search for unique bioactive chemical substances in its cells. Here, by using the yeast Saccharomyces cerevisiae as a model we have demonstrated that methanol extracts from the plant H. rhodopensis hold specific properties to revitalize and ameliorate cellular growth as well as to balance intracellular metabolic states. Our results add valuable knowledge on the effects of natural compounds on ageing and reinforce the idea of using yeast as a model organism in the development of rapid tests for studying the efficacy of different bioactive substances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abudugupur A, Mitsui K, Yokota S, Tsurugi K (2002) An ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation. Cell Death Differ 9:158–168. doi:10.1038/sj.cdd.4400942

    CAS  PubMed  Article  Google Scholar 

  2. Armstrong J (2010) Yeast vacuoles: more than a model lysosome. Trends cell Biol 20:580–585. doi:10.1016/j.tcb.2010.06.010

    CAS  PubMed  Article  Google Scholar 

  3. Bartels D, Hussain SS (2011) Resurrection plants: physiology and molecular biology ecological studies. In: Lüttge U, Beck E, Bartels D (eds) Desiccation tolerance in plants. Springer, Heidelberg, pp 339–364

    Google Scholar 

  4. Berkov SH, Nikolova MT, Hristozova NI, Momekov GZ, Ionkova II, Djilianov DL (2011) GC-MS profiling of bioactive extracts from Haberlea rhodopensis: an endemic resrrection plant. J Serb Chem Soc 76(2):211–220

    CAS  Article  Google Scholar 

  5. Berthele H, Sella O, Lavarde M, Mielcarek C, Pense-Lheritier AM, Pirnay S (2014) Determination of the influence of factors (ethanol, pH and aw) on the preservation of cosmetics using experimental design. Int J Cosmet Sci 36:54–61. doi:10.1111/ics.12094

    CAS  Article  Google Scholar 

  6. Breitenbach M, Michal Jazwinski S, Peter L (2012) Aging research in yeast. Springer, Heidelberg

    Google Scholar 

  7. Cassidy-Stone A et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204. doi:10.1016/j.devcel.2007.11.019

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Corte-Real M, Madeo F (2013) Yeast programed cell death and aging. Front Oncol 3:283. doi:10.3389/fonc.2013.00283

    PubMed Central  PubMed  Article  Google Scholar 

  9. Dell’Acqua G, Schweikert K (2012) Skin benefits of a myconoside-rich extract from resurrection plant Haberlea rhodopensis. Int J Cosmet Sci 34:132–139. doi:10.1111/j.1468-2494.2011.00692.x

    PubMed  Article  Google Scholar 

  10. Djilianov D, Genova G, Parvanova D, Zapryanova N, Konstantinova T, Atanassov A (2005) In vitro culture of the resurrection plant Haberlea rhodopensis. Plant Cell, Tissue Organ Cult 80:115–118

    CAS  Article  Google Scholar 

  11. Djilianov D et al (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13:767–776. doi:10.1111/j.1438-8677.2010.00436.x

    CAS  PubMed  Article  Google Scholar 

  12. Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    CAS  PubMed  Article  Google Scholar 

  13. Gechev TS et al (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol life Sci 70:689–709. doi:10.1007/s00018-012-1155-6

    CAS  PubMed  Article  Google Scholar 

  14. Georgieva M, Roguev A, Balashev K, Zlatanova J, Miloshev G (2012a) Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo. Biochim Biophys Acta 1819:366–374. doi:10.1016/j.bbagrm.2011.12.003

    CAS  PubMed  Article  Google Scholar 

  15. Georgieva S, Popov B, Tanchev S, Deyana H (2012b) Haberlea rhodopensis (Friv.) reduces chromosomal aberrations in whole body irradiated rabbits. Int J Phytomed 4:395–398

    Google Scholar 

  16. Georgieva S, Popov B, Bonev G (2013) Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on gamma-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood. Indian J Exp Biol 51:29–36

    PubMed  Google Scholar 

  17. Gershon H, Gershon D (2000) The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mech Ageing Dev 120:1–22. doi:10.1016/S0047-6374(00)00182-2

    CAS  PubMed  Article  Google Scholar 

  18. Henderson KA, Hughes AL (2014) Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 3:e03504. doi:10.7554/eLife.03504

    PubMed  Article  Google Scholar 

  19. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265. doi:10.1038/nature11654

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Kondeva-Burdina M, Zheleva-Dimitrova D, Nedialkov P, Girreser U, Mitcheva M (2013) Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae). Pharmacogn Mag 9:294–301. doi:10.4103/0973-1296.117822

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Kuchitsu K, Oh-hama T, Tsuzuki M, Miyachi S (1987) Detection and characterization of acidic compartments (vacuoles) in Chlorella vulgaris 11 h cells by 31P-in vivo NMR spectroscopy and cytochemical techniques. Arch Microbiol 148:83–87. doi:10.1007/BF00425353

    CAS  Article  Google Scholar 

  22. Leonov A, Titorenko VI (2013) A network of interorganellar communications underlies cellular aging. IUBMB life 65:665–674. doi:10.1002/iub.1183

    CAS  PubMed  Article  Google Scholar 

  23. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: Endpoint and crossroads. Biochim et Biophys Acta 1793:650–663. doi:10.1016/j.bbamcr.2008.08.003

    CAS  Article  Google Scholar 

  24. Longo VD, Fabrizio P (2012) Chronological Aging in Saccharomyces cerevisiae. Sub-cellular Biochem 57:101–121. doi:10.1007/978-94-007-2561-4_5

    CAS  Article  Google Scholar 

  25. Markovska Y, Kimenov G, Stefanov K, Popov S (1992) Lipid and sterol changes in leaves of Haberlea rhodopensi and Ramonda serbica at transition from biosis into anabiosis and vice versa caused by water stress. Phytochemistry 31:2309–2314. doi:10.1016/0031-9422(92)83270-9

    Article  Google Scholar 

  26. Marques M, Mojzita D, Amorim MA, Almeida T, Hohmann S, Moradas-Ferreira P, Costa V (2006) The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology 152:3595–3605. doi:10.1099/mic.0.29040-0

    CAS  PubMed  Article  Google Scholar 

  27. Mazzoni C, Mangiapelo E, Palermo V, Falcone C (2012) Hypothesis: is yeast a clock model to study the onset of humans aging phenotypes? Front Oncol 2:203. doi:10.3389/fonc.2012.00203

    PubMed Central  PubMed  Article  Google Scholar 

  28. Mazzoni C, Giannattasio S, Winderickx J, Ludovico P (2013) Yeast stress, aging, and death. Oxid Med Cell Longev 2013:684395. doi:10.1155/2013/684395

    PubMed Central  PubMed  Google Scholar 

  29. Moyankova D, Mladenov P, Berkov S, Peshev D, Georgieva D, Djilianov D (2014) Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery. Physiol Plant 152(4):675–687. doi:10.1111/ppl.12212

    CAS  PubMed  Article  Google Scholar 

  30. Müller J, Sprenger N, Bortlik K, Boller T, Wiemken A (1997) Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol Plant 100:153–158. doi:10.1111/j.1399-3054.1997.tb03466.x

    Article  Google Scholar 

  31. Palermo V, Mattivi F, Silvestri R, La Regina G, Falcone C, Mazzoni C (2012) Apple can act as anti-aging on yeast cells. Oxid Med Cell Longev 2012:491759. doi:10.1155/2012/491759

    PubMed Central  PubMed  Google Scholar 

  32. Pereira C, Bessa C, Saraiva L (2012) Endocytosis inhibition during H2O2-induced apoptosis in yeast. FEMS Yeast Res 12:755–760. doi:10.1111/j.1567-1364.2012.00825.x

    CAS  PubMed  Article  Google Scholar 

  33. Russell AD (2003) Challenge testing: principles and practice. Int J Cosmet Sci 25:147–153. doi:10.1046/j.1467-2494.2003.00179.x

    CAS  PubMed  Article  Google Scholar 

  34. Testa G, Biasi F, Poli G, Chiarpotto E (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20:2950–2977

    CAS  PubMed  Article  Google Scholar 

  35. Uzunova K, Georgieva M, Miloshev G (2013) Saccharomyces cerevisiae linker histone-Hho1p maintains chromatin loop organization during ageing. Oxid Med Cell Longev 2013:437146. doi:10.1155/2013/437146

    PubMed Central  PubMed  Google Scholar 

  36. Veleva R et al (2015) Changes in the functional characteristics of tumor and normal cells after treatment with extracts of white dead-nettle. Biotechnol Biotechnol Equip 29:181–188

    PubMed Central  PubMed  Article  Google Scholar 

  37. Wach A, Brachat A, Rebischung C, Steiner S, Pokorni K, Heesen ST, Philippsen P (1998) 5 PCR-based gene targeting in Saccharomyces cerevisiae. In: Alistair JPB, Mick T (eds) Methods in microbiology. Academic Press, San Diego, pp 67–81

    Google Scholar 

  38. Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105:1539–1547

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Miloshev.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georgieva, M., Moyankova, D., Djilianov, D. et al. Methanol extracts from the resurrection plant Haberlea rhodopensis ameliorate cellular vitality in chronologically ageing Saccharomyces cerevisiae cells. Biogerontology 16, 461–472 (2015). https://doi.org/10.1007/s10522-015-9566-z

Download citation

Keywords

  • Resurrection plant
  • Haberlea rhodopensis
  • Saccharomyces cerevisiae
  • Ageing
  • Cellular vitality
  • Metabolism
  • Model organism