Quantile-Specific Heritability of Intakes of Alcohol but not Other Macronutrients

Abstract

Genetic heritability (h2) of alcohol use is reported to be greater in rural dwellers, distressed marriages, low socioeconomic status, in girls who are unmarried or lacking closeness with their parents or religious upbringing, in less-educated men, and in adolescents with peers using alcohol. However, these are all risk factors for heavy drinking, and the greater heritability could be due to quantile-dependent expressivity, i.e., hdependent upon whether the phenotype (alcohol intake) is high or low relative to its distribution. Quantile regression showed that h2 estimated from the offspring-parent regression slope increased significantly from lowest to highest gram/day of alcohol consumption (0.006 ± 0.001 per percent, P = 1.1 × 10−7). Heritability at the 90th percentile of the sample distribution (0.557 ± 0.116) was 4.5-fold greater than at the 10th percentile (0.122 ± 0.037). Heritabilities for intakes of other macronutrients were not quantile-dependent. Thus quantile-dependent expressivity may explain the higher estimated heritability associated with risk factors for high alcohol consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. American Psychiatric Publishing, Arlington, VA

    Google Scholar 

  2. Ask H, Rognmo K, Torvik FA, Røysamb E, Tambs K (2012) Non-random mating and convergence over time for alcohol consumption, smoking, and exercise: the Nord-Trøndelag Health Study. Behav Genet 42:354–365

    PubMed  Google Scholar 

  3. Bujarski S, Lau AS, Lee SS, Ray LA (2015) Genetic and environmental predictors of alcohol use in Asian American young adults. J Stud Alcohol Drugs 76:690–699

    PubMed  PubMed Central  Google Scholar 

  4. Chartier KG, Dick DM, Almasy L, Chan G, Aliev F, Schuckit MA, Scott DM, Kramer J, Bucholz KK, Bierut LJ, Nurnberger J Jr, Porjesz B, Hesselbrock VM (2016) Interactions between alcohol metabolism genes and religious involvement in association with maximum drinks and alcohol dependence symptoms. J Stud Alcohol Drugs 77:393–404

    PubMed  PubMed Central  Google Scholar 

  5. Chartier KG, Karriker-Jaffe KJ, Cummings CR, Kendler KS (2017) Review: environmental influences on alcohol use: Informing research on the joint effects of genes and the environment in diverse U.S. populations. Am J Addict 26:446–460

    PubMed  PubMed Central  Google Scholar 

  6. Cleveland HH, Wiebe RP (2003) The moderation of genetic and shared-environmental influences on adolescent drinking by levels of parental drinking. J Stud Alcohol 64:182–194

    PubMed  Google Scholar 

  7. Cooke ME, Meyers JL, Latvala A, Korhonen T, Rose RJ, Kaprio J, Salvatore JE, Dick DM (2015) Gene-environment interaction effects of peer deviance, parental knowledge and stressful life events on adolescent alcohol use. Twin Res Hum Genet 18:507–517

    PubMed  PubMed Central  Google Scholar 

  8. Covault J, Tennen H, Armeli S, Conner TS, Herman AI, Cillessen AH, Kranzler HR (2007) Interactive effects of the serotonin transporter 5-HTTLPR polymorphism and stressful life events on college student drinking and drug use. Biol Psychiatry 61:609–616

    PubMed  Google Scholar 

  9. Davis CN, Natta SS, Slutske WS (2017) Moderation of genetic influences on alcohol involvement by rural residency among adolescents: results from the 1962 National Merit Twin Study. Behav Genet 47:587–595

    PubMed  PubMed Central  Google Scholar 

  10. Davis CN, Slutske WS (2018) Socioeconomic status and adolescent alcohol involvement: evidence for a gene-environment interaction. J Stud Alcohol Drugs 79:725–732

    PubMed  PubMed Central  Google Scholar 

  11. Dick DM, Rose RJ, Viken RJ, Kaprio J, Koskenvuo M (2001) Exploring gene-environment interactions: socioregional moderation of alcohol use. J Abnorm Psychol 110:625–632

    PubMed  Google Scholar 

  12. Dick DM, Pagan JL, Holliday C, Viken R, Pulkkinen L, Kaprio J, Rose RJ (2007) Gender differences in friends' influences on adolescent drinking: a genetic epidemiological study. Alcohol Clin Exp Res 31:2012–2019

    PubMed  Google Scholar 

  13. Dick DM, Meyers JL, Rose RJ, Kaprio J, Kendler KS (2011) Measures of current alcohol consumption and problems: two independent twin studies suggest a complex genetic architecture. Alcohol Clin Exp Res 35:2152–2161

    PubMed  PubMed Central  Google Scholar 

  14. Dick DM, Cho SB, Latendresse SJ, Aliev F, Nurnberger JI Jr, Edenberg HJ, Schuckit M, Hesselbrock VM, Porjesz B, Bucholz K, Wang JC, Goate A, Kramer JR, Kuperman S (2014) Genetic influences on alcohol use across stages of development: GABRA2 and longitudinal trajectories of drunkenness from adolescence to young adulthood. Addict Biol 19:1055–1064

    PubMed  Google Scholar 

  15. Evangelou E, Gao H, Chu C, Ntritsos G, Blakeley P, Butts AR, Pazoki R, Suzuki H, Koskeridis F, Yiorkas AM, Karaman I, Elliott J, Luo Q, Aeschbacher S, Bartz TM, Baumeister SE, Braund PS, Brown MR, Brody JA, Clarke TK, Dimou N, Faul JD, Homuth G, Jackson AU, Kentistou KA, Joshi PK, Lemaitre RN, Lind PA, Lyytikäinen LP, Mangino M, Milaneschi Y, Nelson CP, Nolte IM, Perälä MM, Polasek O, Porteous D, Ratliff SM, Smith JA, Stančáková A, Teumer A, Tuominen S, Thériault S, Vangipurapu J, Whitfield JB, Wood A, Yao J, Yu B, Zhao W, Arking DE, Auvinen J, Liu C, Männikkö M, Risch L, Rotter JI, Snieder H, Veijola J, Blakemore AI, Boehnke M, Campbell H, Conen D, Eriksson JG, Grabe HJ, Guo X, van der Harst P, Hartman CA, Hayward C, Heath AC, Jarvelin MR, Kähönen M, Kardia SLR, Kühne M, Kuusisto J, Laakso M, Lahti J, Lehtimäki T, McIntosh AM, Mohlke KL, Morrison AC, Martin NG, Oldehinkel AJ, Penninx BWJH, Psaty BM, Raitakari OT, Rudan I, Samani NJ, Scott LJ, Spector TD, Verweij N, Weir DR, Wilson JF, Levy D, Tzoulaki I, Bell JD, Matthews PM, Rothenfluh A, Desrivières S, Schumann G, Elliott P (2019) New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat Hum Behav 3:950–961

    PubMed  Google Scholar 

  16. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow, Essex

    Google Scholar 

  17. Giovannucci E, Colditz G, Stampfer MJ, Rimm EB, Litin L, Sampson L, Willett WC (1991) The assessment of alcohol consumption by a simple self-administered questionnaire. Am J Epidemiol 133:810–817

    PubMed  Google Scholar 

  18. Gould WW (1992) Quantile regression with bootstrapped standard errors. Stat Tech Bull 9:19–21

    Google Scholar 

  19. Grant JD, Heath AC, Bucholz KK, Madden PA, Agrawal A, Statham DJ, Martin NG (2007) Spousal concordance for alcohol dependence: evidence for assortative mating or spousal interaction effects? Alcohol Clin Exp Res 31:717–728

    PubMed  Google Scholar 

  20. Hamdi NR, Krueger RF, South SC (2015) Socioeconomic status moderates genetic and environmental effects on the amount of alcohol use. Alcohol Clin Exp Res 39:603–610

    PubMed  PubMed Central  Google Scholar 

  21. Hansell NK, Agrawal A, Whitfield JB, Morley KI, Zhu G, Lind PA, Pergadia ML, Madden PA, Todd RD, Heath AC, Martin NG (2008) Long-term stability and heritability of telephone interview measures of alcohol consumption and dependence. Twin Res Hum Genet 11:287–305

    PubMed  Google Scholar 

  22. Hartwell EE, Feinn R, Morris PE, Gelernter J, Krystal J, Arias AJ, Hoffman M, Petrakis I, Gueorguieva R, Schacht JP, Oslin D, Anton RF, Kranzler HR (2020) Systematic review and meta-analysis of the moderating effect of rs1799971 in OPRM1, the mu-opioid receptor gene, on response to naltrexone treatment of alcohol use disorder. Addiction. https://doi.org/10.1111/add.14975

    Article  PubMed  Google Scholar 

  23. Hasselbalch AL, Heitmann BL, Kyvik KO, Sørensen T (2008) Studies of twins indicate that genetics influence dietary intake. J Nutr 138:2406–2412

    PubMed  Google Scholar 

  24. Hasin DS, Stinson FS, Ogburn E, Grant BF (2007) Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry 64:830–842

    PubMed  Google Scholar 

  25. Heath AC, Jardine R, Martin NG (1989) Interactive effects of genotype and social environment on alcohol consumption in female twins. J Stud Alcohol 50:38–48

    PubMed  Google Scholar 

  26. Higuchi S, Matsushita S, Imazeki H, Kinoshita T, Takagi S, Kono H (1994) Aldehyde dehydrogenase genotypes in Japanese alcoholics. Lancet 343:741–742

    PubMed  Google Scholar 

  27. Hutchison KE, Wooden A, Swift RM, Smolen A, McGeary J, Adler L, Paris L (2003) Olanzapine reduces craving for alcohol: a DRD4 VNTR polymorphism by pharmacotherapy interaction. Neuropsychopharmacology 28:1882–1888

    PubMed  Google Scholar 

  28. Irons DE, Iacono WG, Oetting WS, McGue M (2012) Developmental trajectory and environmental moderation of the effect of ALDH2 polymorphism on alcohol use. Alcohol Clin Exp Res 36:1882–1891

    PubMed  PubMed Central  Google Scholar 

  29. Jarnecke AM, South SC (2014) Genetic and environmental influences on alcohol use problems: moderation by romantic partner support, but not family or friend support. Alcohol Clin Exp Res 38:367–375

    PubMed  Google Scholar 

  30. Johnson W, Kyvik KO, Mortensen EL, Skytthe A, Batty GD, Deary IJ (2011) Does education confer a culture of healthy behavior? Smoking and drinking patterns in Danish twins. Am J Epidemiol 173:55–63

    PubMed  Google Scholar 

  31. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110:281–290

    PubMed  Google Scholar 

  32. Karlin S, Cameron EC, Williams PT (1981) Sibling and parent–offspring correlation estimation with variable family size. Proc Natl Acad Sci USA 78:2664–2668

    PubMed  Google Scholar 

  33. Kendler KS, Schmitt E, Aggen SH, Prescott CA (2008) Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood. Arch Gen Psychiatry 65:674–682

    PubMed  PubMed Central  Google Scholar 

  34. Kendler KS, Myers J, Dick D, Prescott CA (2010) The relationship between genetic influences on alcohol dependence and on patterns of alcohol consumption. Alcohol Clin Exp Res 34:1058–1065

    PubMed  PubMed Central  Google Scholar 

  35. Kendler KS, Gardner C, Dick DM (2011) Predicting alcohol consumption in adolescence from alcohol-specific and general externalizing genetic risk factors, key environmental exposures and their interaction. Psychol Med 41:1507–1516

    PubMed  Google Scholar 

  36. Kimokoti RW, Newby PK, Gona P, Zhu L, Campbell WR, D'Agostino RB, Millen BE (2012) Stability of the Framingham Nutritional Risk Score and its component nutrients over 8 years: the Framingham Nutrition Studies. Eur J Clin Nutr 66:336–344

    PubMed  Google Scholar 

  37. Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15:143–156

    Google Scholar 

  38. Koopmans JR, Slutske WS, van Baal GC, Boomsma DI (1999) The influence of religion on alcohol use initiation: evidence for genotype X environment interaction. Behav Genet 29:445–453

    PubMed  Google Scholar 

  39. Legrand LN, Keyes M, McGue M, Iacono WG, Krueger RF (2008) Rural environments reduce the genetic influence on adolescent substance use and rule-breaking behavior. Psychol Med 38:1341–1350

    PubMed  Google Scholar 

  40. Maes HH, Neale MC, Kendler KS, Hewitt JK, Silberg JL, Foley DL, Meyer JM, Rutter M, Simonoff E, Pickles A, Eaves LJ (1998) Assortative mating for major psychiatric diagnoses in two population-based samples. Psychol Med 28:1389–1401

    PubMed  Google Scholar 

  41. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    PubMed  PubMed Central  Google Scholar 

  42. McGue M (1999) Behavioral genetic models of alcoholism and drinking. In: Leonard KE, Blane HT (eds) Psychological theories of drinking and alcoholism. Guilford Press, New York, pp 372–421

    Google Scholar 

  43. Meyers JL, Shmulewitz D, Wall MM, Keyes KM, Aharonovich E, Spivak B, Weizman A, Frisch A, Edenberg HJ, Gelernter J, Grant BF, Hasin D (2015) Childhood adversity moderates the effect of ADH1B on risk for alcohol-related phenotypes in Jewish Israeli drinkers. Addict Biol 20:205–214

    PubMed  Google Scholar 

  44. Miles DR, Silberg JL, Pickens RW, Eaves LJ (2005) Familial influences on alcohol use in adolescent female twins: testing for genetic and environmental interactions. J Stud Alcohol 66:445–451

    PubMed  Google Scholar 

  45. Nilsson KW, Sjöberg RL, Damberg M, Alm PO, Ohrvik J, Leppert J, Lindström L, Oreland L (2005) Role of the serotonin transporter gene and family function in adolescent alcohol consumption. Alcohol Clin Exp Res 29:564–570

    PubMed  Google Scholar 

  46. Nilsson KW, Sjöberg RL, Wargelius HL, Leppert J, Lindström L, Oreland L (2007) The monoamine oxidase A (MAO-A) gene, family function and maltreatment as predictors of destructive behaviour during male adolescent alcohol consumption. Addiction 102:389–398

    PubMed  Google Scholar 

  47. O'Shea T, Thomas N, Webb BT, Dick DM, Kendler KS, Chartier KG (2017) ALDH2*2 and peer drinking in East Asian college students. Am J Drug Alcohol Abuse 43:678–685

    PubMed  PubMed Central  Google Scholar 

  48. Reynolds CA, Barlow T, Pedersen NL (2006) Alcohol, tobacco and caffeine use: spouse similarity processes. Behav Genet 36:201–215

    PubMed  Google Scholar 

  49. Rietschel M, Treutlein J (2013) The genetics of alcohol dependence. Ann N Y Acad Sci 1282:39–70

    PubMed  Google Scholar 

  50. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC (1992) Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 135:1114–1126

    PubMed  Google Scholar 

  51. Rose RJ, Dick DM, Viken RJ, Kaprio J (2001) Gene-environment interaction in patterns of adolescent drinking: regional residency moderates longitudinal influences on alcohol use. Alcohol Clin Exp Res 25:637–643

    PubMed  Google Scholar 

  52. Sartor CE, Wang Z, Xu K, Kranzler HR, Gelernter J (2014) The joint effects of ADH1B variants and childhood adversity on alcohol related phenotypes in African-American and European-American women and men. Alcohol Clin Exp Res 38:2907–2914

    PubMed  PubMed Central  Google Scholar 

  53. Schacht JP, Randall PK, Latham PK, Voronin KE, Book SW, Myrick H, Anton RF (2017) Predictors of naltrexone response in a randomized trial: reward-related brain activation, OPRM1 genotype, and smoking status. Neuropsychopharmacology 42:2640–2653

    PubMed  PubMed Central  Google Scholar 

  54. Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, Desrivières S, Aliev FA, Khan AA, Amin N, Aulchenko YS, Bakalkin G, Bakker SJ, Balkau B, Beulens JW, Bilbao A, de Boer RA, Beury D, Bots ML, Breetvelt EJ, Cauchi S, Cavalcanti-Proença C, Chambers JC, Clarke TK, Dahmen N, de Geus EJ, Dick D, Ducci F, Easton A, Edenberg HJ, Esko T, Fernández-Medarde A, Foroud T, Freimer NB, Girault JA, Grobbee DE, Guarrera S, Gudbjartsson DF, Hartikainen AL, Heath AC, Hesselbrock V, Hofman A, Hottenga JJ, Isohanni MK, Kaprio J, Khaw KT, Kuehnel B, Laitinen J, Lobbens S, Luan J, Mangino M, Maroteaux M, Matullo G, McCarthy MI, Mueller C, Navis G, Numans ME, Núñez A, Nyholt DR, Onland-Moret CN, Oostra BA, O'Reilly PF, Palkovits M, Penninx BW, Polidoro S, Pouta A, Prokopenko I, Ricceri F, Santos E, Smit JH, Soranzo N, Song K, Sovio U, Stumvoll M, Surakk I, Thorgeirsson TE, Thorsteinsdottir U, Troakes C, Tyrfingsson T, Tönjes A, Uiterwaal CS, Uitterlinden AG, van der Harst P, van der Schouw YT, Staehlin O, Vogelzangs N, Vollenweider P, Waeber G, Wareham NJ, Waterworth DM, Whitfield JB, Wichmann EH, Willemsen G, Witteman JC, Yuan X, Zhai G, Zhao JH, Zhang W, Martin NG, Metspalu A, Doering A, Scott J, Spector TD, Loos RJ, Boomsma DI, Mooser V, Peltonen L, Stefansson K, van Duijn CM, Vineis P, Sommer WH, Kooner JS, Spanagel R, Heberlein UA, Jarvelin MR, Elliott P (2011) Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci USA 108:7119–7124

    PubMed  Google Scholar 

  55. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB Sr, Fox CS, Larson MG, Murabito JM, O'Donnell CJ, Vasan RS, Wolf PA, Levy D (2007) The third generation cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol 165:1328–1335

    PubMed  Google Scholar 

  56. van Beek JH, de Moor MH, Geels LM, Willemsen G, Boomsma DI (2014) Explaining individual differences in alcohol intake in adults: evidence for genetic and cultural transmission? J Stud Alcohol Drugs 75:201–210

    PubMed  Google Scholar 

  57. van der Zwaluw CS, Engels RC, Vermulst AA, Franke B, Buitelaar J, Verkes RJ, Scholte RH (2010) Interaction between dopamine D2 receptor genotype and parental rule-setting in adolescent alcohol use: evidence for a gene-parenting interaction. Mol Psychiatry 15:727–735

    PubMed  Google Scholar 

  58. Verhulst B, Neale MC, Kendler KS (2015) The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol Med 45:1061–1072

    PubMed  Google Scholar 

  59. Wang H, Fox CS, Troy LM, Mckeown NM, Jacques PF (2015) Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: the Framingham Heart Study. Br J Nutr 114:1887–1899

    PubMed  PubMed Central  Google Scholar 

  60. Williams PT (2012) Quantile-specific penetrance of genes affecting lipoproteins, adiposity and height. PLoS ONE 7(1):e28764

    PubMed  PubMed Central  Google Scholar 

  61. Williams PT (2020a) Quantile-specific heritability may account for gene-environment interactions involving coffee consumption. Behav Genet 50:119–126

    PubMed  Google Scholar 

  62. Williams PT (2020b) Quantile-dependent expressivity of postprandial lipemia. PLoS ONE 15:e0229495

    PubMed  PubMed Central  Google Scholar 

  63. Williams PT (2020c) Gene-environment interactions due to quantile-specific heritability of triglyceride and VLDL concentrations. Sci Rep 10:4486

    PubMed  PubMed Central  Google Scholar 

  64. Williams PT (2020d) Spirometric traits show quantile-dependent heritability, which may contribute to their gene-environment interactions with smoking and pollution. PeerJ 8:e9145

    PubMed  PubMed Central  Google Scholar 

  65. Williams PT (2020e) Quantile-specific heritability of high-density lipoproteins with implications for precision medicine. J Clin Lipidol. https://doi.org/10.1016/j.jacl.2020.05.099

    Article  PubMed  Google Scholar 

  66. Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental design Third edition. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

The data were obtained from the National Institutes of Health FRAMCOHORT, GEN3, FRAMOFFSPRING Research Materials obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center. The author (PTW) was responsible for the project conception, development of overall research plan, analyzing data including statistical analysis, and wrote the paper. The sole author had responsibility for all parts of the manuscript. The Framingham Heart Study was conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). Funding support for the Framingham Food Frequency Questionnaire dataset was provided by ARS Contract #53- 3k06-5-10, ARS Agreement #’s 58-1950-9-001, 58-1950-4-401 and 58-1950-7-707. This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, FRAMCOHORT, GEN3, FRAMOFFSPRING, Boston University, or NHLBI.

Funding

This research was supported by grant R21ES020700 from the National Institute of Environmental Health Sciences, and an unrestricted gift from HOKA ONE ONE.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul T. Williams.

Ethics declarations

Conflict of interest

Paul T. Williams declares that they are no conflict of interest to report.

Human and Animal Rights, Informed Consent

These analyses were approved by Lawrence Berkeley National Laboratory Human Subjects Committee (HSC) for protocol “Gene-environment interaction vs quantile-dependent penetrance of established SNPs (107H021)” LBNL holds Office of Human Research Protections Federal wide Assurance number FWA 00006253. Approval number: 107H021-13MR20.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Wendy Slutske.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 566 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, P.T. Quantile-Specific Heritability of Intakes of Alcohol but not Other Macronutrients. Behav Genet 50, 332–345 (2020). https://doi.org/10.1007/s10519-020-10005-z

Download citation

Keywords

  • Alcohol
  • Heritability
  • Macronutrients
  • Genetics
  • Wine
  • Beer
  • Mixed drinks