Seismic retrofitting of RC buildings using CFRP and post-tensioned metal straps: shake table tests

Abstract

This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15 g, the retrofitted building resisted severe three-dimensional shake table tests up to PGA = 0.60 g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160 and 110 %, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. AFNOR (2007) Aciers pour beton arrne—Aciers soudables a verrous Partie1: Barres et couronnes. NF A 35-016-1, Association Française de Normalisation, Paris

  2. Akguzel U, Pampanin S (2010) Effects of variation of axial load and bidirectional loading on seismic performance of GFRP retrofitted reinforced concrete exterior beam-column joints. J Compos Constr 14(1):94–104. doi:10.1061/(Asce)1090-0268(2010)14:1(94

    Article  Google Scholar 

  3. Al-Salloum YA, Almusallam TH, Alsayed SH, Siddiqui NA (2011) Seismic behavior of as-built, ACI-complying, and CFRP-repaired exterior RC beam-column joints. J Compos Constr 15(4):522–534. doi:10.1061/(Asce)Cc.1943-5614.0000186

    Article  Google Scholar 

  4. Antonopoulos CP, Triantafillou TC (2003) Experimental investigation of FRP-strengthened RC beam-column joints. J Compos Constr 7(1):39–49. doi:10.1061/(Asce)1090-0268(2003)7:1(39)

    Article  Google Scholar 

  5. ASCE (2007) ASCE/SEI 41-06 Seismic rehabilitation of existing buildings. American Society of Civil Engineers, Reston

    Google Scholar 

  6. Biddah A, Ghobarah A, Aziz TS (1997) Upgrading of nonductile reinforced concrete frame connections. J Struct Eng 123(8):1001–1010

    Article  Google Scholar 

  7. CEN (2004a) EN 1992-1-1:2004. Eurocode 2: Design of concrete structures, Part 1–1: general rules and rules for buildings. Comité Européen de Normalisation, Lausanne

  8. CEN (2004b) EN 1998-1:2004 Eurocode 8: design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. Comité Européen de Normalisation, Lausanne

    Google Scholar 

  9. CEN (2009a) EN 12390-5:2009 Testing hardened concrete part 5: flexural strength of test specimens. Comité Européen de Normalisation, Lausanne

    Google Scholar 

  10. CEN (2009b) EN 12390-6:2009 Testing hardened concrete part 6: tensile splitting strength of test specimens. Comité Européen de Normalisation, Lausanne

    Google Scholar 

  11. Clough RW, Penzien J (2003) Dynamics of structures. Computers and Structures Inc, Berkeley

    Google Scholar 

  12. Corazao M, Durrani AJ (1989) Repair and strengthening of beam-to-column connections subjected to earthquake loading. National Center for Earthquake Engineering Research, State University of New York at Buffalo

  13. DiPasquale E, Ju JW, Askar A, Cakmak AS (1990) Relation between global damage indexes and local Stiffness degradation. J Struct Eng-Asce 116(5):1440–1456. doi:10.1061/(Asce)0733-9445(1990)116:5(1440)

    Article  Google Scholar 

  14. Frangou M (1996) Strengthening of concrete by lateral confinement. Ph.D. thesis, Department of Civil and Structural Engineering, The University of Sheffield, UK

  15. Frangou M, Pilakoutas K, Dritsos S (1995) Structural repair strengthening of RC columns. Cons Build Mater 9(5):259–266. doi:10.1016/0950-0618(95)00013-6

    Article  Google Scholar 

  16. Garcia R, Hajirasouliha I, Pilakoutas K (2010) Seismic behaviour of deficient RC frames strengthened with CFRP composites. Eng Struct 32(10):3075–3085. doi:10.1016/j.engstruct.2010.05.026

    Article  Google Scholar 

  17. Garcia R, Hajirasouliha I, Guadagnini M, Helal Y, Jemaa Y, Pilakoutas K, Mongabure P, Chrysostomou C, Kyriakides N, Ilki A, Budescu M, Taranu N, Ciupala MA, Torres L, Saiidi M (2014a) Full-scale shaking table tests on a substandard RC building repaired and strengthened with post-tensioned metal straps. J Earthq Eng 18(2):187–213. doi:10.1080/13632469.2013.847874

    Article  Google Scholar 

  18. Garcia R, Helal Y, Pilakoutas K, Guadagnini M (2014b) Bond behaviour of substandard splices in RC beams externally confined with CFRP. Constr Build Mater 50:340–351. doi:10.1016/j.conbuildmat.2013.09.021

    Article  Google Scholar 

  19. Garcia R, Jemaa Y, Helal Y, Guadagnini M, Pilakoutas K (2014c) Seismic strengthening of severely damaged beam-column RC joints using CFRP. J Compos Constr. doi:10.1061/(Asce)Cc.1943-5614.0000448

    Google Scholar 

  20. Garcia R, Helal Y, Pilakoutas K, Guadagnini M (2015) Bond strength of short lap splices in RC beams confined with steel stirrups or external CFRP. Mater Struct 48(1–2):277–293. doi:10.1617/s11527-013-0183-5

    Article  Google Scholar 

  21. GB50011-2001 (2001) Code for seismic design of buildings. Architecture and Building Press, Ministry of Construction of China, Beijing

  22. Gdoutos EE, Pilakoutas K, Rodopoulos CA (2000) Failure analysis of industrial composite materials. McGraw-Hill, New York

    Google Scholar 

  23. Ghobarah A, El-Amoury T (2005) Seismic rehabilitation of deficient exterior concrete frame joints. J Compos Constr 9(5):408–416. doi:10.1061/(Asce)1090-0268(2005)9:5(408)

    Article  Google Scholar 

  24. Ghobarah A, Aziz TS, Biddah A (1996) Seismic rehabilitation of reinforced concrete beam-column connections. Earthq Spectra 12(4):761–780. doi:10.1193/1.1585909

    Article  Google Scholar 

  25. Hajirasouliha I, Asadi P, Pilakoutas K (2012) An efficient performance-based seismic design method for reinforced concrete frames. Earthq Eng Struct D 41(4):663–679. doi:10.1002/Eqe.1150

    Article  Google Scholar 

  26. Helal Y (2012) Seismic strengthening of deficient RC elements using PTMS. Ph.D. thesis, Department of Civil and Structural Engineering, The University of Sheffield, UK

  27. Helal Y, Garcia R, Guadagnini M, Pilakoutas K, Hajirasouliha I (2014) Strengthening of short splices in RC beams using post-tensioned metal straps. Mater Struct. doi:10.1617/s11527-014-0481-6

    Google Scholar 

  28. Ilki A, Bedirhanoglu I, Kumbasar N (2011) Behavior of FRP-retrofitted joints built with plain bars and low-strength concrete. J Compos Constr 15(3):312–326. doi:10.1061/(ASCE)CC.1943-5614.0000156

    Article  Google Scholar 

  29. Karayannis CG, Chalioris CE, Sirkelis GM (2008) Local retrofit of exterior RC beam-column joints using thin RC jackets: an experimental study. Earthq Eng Struct Dyn 37(5):727–746. doi:10.1002/Eqe.783

    Article  Google Scholar 

  30. Kyriakides N, Ahmad S, Pilakoutas K, Neocleous K, Chrysostomou C (2014) A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries. Earthq Struct 6(6):665–687

    Article  Google Scholar 

  31. Li JB, Gong JX, Wang LC (2009) Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Cons Build Mater 23(7):2653–2663. doi:10.1016/j.conbuildmat.2009.01.003

    Article  Google Scholar 

  32. Moghaddam H, Samadi M, Pilakoutas K, Mohebbi S (2010) Axial compressive behavior of concrete actively confined by metal strips; part A: experimental study. Mater Struct 43(10):1369–1381. doi:10.1617/s11527-010-9588-6

    Article  Google Scholar 

  33. Mongabure P (2012) BANDIT project: seismic tests on a reinforced concrete frame with post-tensioned metal strips retrofitting, final report. FP7 SERIES Programme (seismic engineering research infrastructures for european synergies)

  34. Pantelides CP, Gergely J (2008) Seismic retrofit of reinforced concrete beam column T-joints in bridge piers with FRP composite jackets. Paper presented at the SP-258: seismic strengthening of concrete buildings using FRP composites (in CD-ROM)

  35. Parvin A, Altay S, Yalcin C, Kaya O (2010) CFRP rehabilitation of concrete frame joints with inadequate shear and anchorage details. J Compos Constr 14(1):72–82. doi:10.1061/(Asce)Cc.1943-5614.0000055

    Article  Google Scholar 

  36. RILEM (1994) RILEM Recommendations for the testing and use of constructions materials—CPC 8 modulus of elasticity of concrete in compression 1975

  37. Sasmal S, Ramanjaneyulu K, Novak B, Srinivas V, Kumar KS, Korkowski C, Roehm C, Lakshmanan N, Iyer NR (2011) Seismic retrofitting of nonductile beam-column sub-assemblage using FRP wrapping and steel plate jacketing. Cons Build Mater 25(1):175–182. doi:10.1016/j.conbuildmat.2010.06.041

    Article  Google Scholar 

  38. Sezen H (2012) Repair and strengthening of reinforced concrete beam-column joints with fiber-reinforced polymer composites. J Compos Constr 16(5):499–506. doi:10.1061/(Asce)Cc.1943-5614.0000290

    Article  Google Scholar 

  39. Thermou GE, Pantazopoulou SJ (2011) Assessment indices for the seismic vulnerability of existing RC buildings. Earthq Eng Struct D 40(3):293–313. doi:10.1002/Eqe.1028

    Article  Google Scholar 

  40. Tsonos ADG (2010) Performance enhancement of R/C building columns and beam-column joints through shotcrete jacketing. Eng Struct 32(3):726–740. doi:10.1016/j.engstruct.2009.12.001

    Article  Google Scholar 

  41. Zembaty Z, Kowalski M, Pospisil S (2006) Dynamic identification of a reinforced concrete frame in progressive states of damage. Eng Struct 28(5):668–681. doi:10.1016/j.engstruct.2005.09.025

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Program [FP7/2007–2013] for access to CEA (Commissariat à l’Energie Atomique) under Grant Agreement No. 227887.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Reyes Garcia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 41486 kb)

Supplementary material 2 (MPG 51404 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia, R., Pilakoutas, K., Hajirasouliha, I. et al. Seismic retrofitting of RC buildings using CFRP and post-tensioned metal straps: shake table tests. Bull Earthquake Eng 15, 3321–3347 (2017). https://doi.org/10.1007/s10518-015-9800-8

Download citation

Keywords

  • Shake table tests
  • Full-scale buildings
  • Seismic retrofitting
  • CFRP composites
  • Post tensioned metal straps
  • Substandard RC buildings