Biocompatibility and Bioresorption of 3D-Printed Polylactide and Polyglycolide Tissue Membranes

We studied biocompatibility and bioresorption of 3D-printed polylactide and polyglycolide tissue membranes. Ultrasound microscopy and histological examination showed that membranes fabricated of a copolymer of lactic and glycolic acids in a mass ratio of 1:9 are bioresorbed and have good biocompatibility with soft tissues (connective tissue, adipose tissue, and epithelium). An important feature of the copolymer membranes, which differs them from pure polylactide membranes, is the formation of a thin fibrous capsule that did not interfere its destruction by the mechanism of hydrolytic resorption.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Belov DA. Polylactide: a biodegradable polymer. Nauka Innovatsii. 2013;(9):21-23. Russian.

    Article  Google Scholar 

  2. 2.

    Ivanov SY, Bonartsev AP, Gazhva YV, Zharkova II, Mukhametshin RF, Mahina TK, Myshkina VL, Bonartseva GA, Voinova VV, Andreeva NV, Akulina EA, Kharitonova ES, Shaitan KV, Muraev AA. Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrateco-3-hydroxyvalerate for guided bone regeneration. Biomed. Khim. 2015;61(6):717-23. doi: https://doi.org/10.18097/PBMC20156106717

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ivanov SYu, Gazhva YuV, Muraev AA, Bonartsev AP. Contemporary membrane to guided bone regeneration in dental surgery (review). Sovremen. Probl. Nauki Obrazovaniya. 2012;(3):74. Russian.

    Google Scholar 

  4. 4.

    Muraev AA, Gazhva YV, Ivashkevich SG, Riabova VM, Korotkova NL, Semyonova YA, Metsuku IN, Faizullin RL, Ivanov SY. A novel approach to alveolar bone complex defects 3D reconstruction. Sovremen. Tekhnol. Med. 2017;9(2):37-45. Russian.

    Article  Google Scholar 

  5. 5.

    Nasonova MV, Hodyrevskaya YI, Nemoykina AL, Mikhaylenko MYu, Kudryavtseva YA. Optimization of physical, mechanical and degradation properties for biodegradable antiadhesive membranes. Vestn. Kemerov. Gos. Univer. 2015;(2-1):65-69. Russian.

  6. 6.

    Petronyuk YS, Khramtsova EA, Levin VM, Bonartsev AP, Voinova VI, Bonartseva GA, Muraev AA, Asfarov TF, Guseynov NA. Developing Techniques of Acoustic Microscopy for Monitoring Processes of Osteogenesis in Regenerative Medicine. Bull. Russ. Acad. Sci. Phys. 2020;84(6):653-656.

    CAS  Article  Google Scholar 

  7. 7.

    Khoninov BV, Sergunin ON, Skoroglyadov PA. Biodegradable materials application in traumatology and orthopedics (review). Vestn. Ross. Gos. Med. Univer. 2014;(1):20-24. Russian.

    Google Scholar 

  8. 8.

    Dedukh NV, Makarov VB, Pavlov AD. Polylactide-based biomaterial and its use as bone implants (analytical literature review). Pain, Joints, Spine. 2019;9(1):28-35. doi: https://doi.org/10.22141/2224-1507.9.1.2019.163056

    Article  Google Scholar 

  9. 9.

    Gutta R, Baker RA, Bartolucci AA, Louis PJ. Barrier Membranes Used for Ridge Augmentation: Is There an Optimal Pore Size? J. Oral Maxillofac. Surg. 2009;67(6):1218-1225. doi: https://doi.org/10.1016/j.joms.2008.11.022

    Article  PubMed  Google Scholar 

  10. 10.

    Khramtsova E, Morokov E, Lukanina K, Grigoriev T, Petronyuk Y, Shepelev A, Gubareva E, Kuevda E, Levin V, Chvalun S. Impulse acoustic microscopy: A new approach for investigation of polymer and natural scaffolds. Polym. Eng. Sci. 2017;57(7, Special Issue;2):709-715. doi: https://doi.org/10.1002/pen.24617

    CAS  Article  Google Scholar 

  11. 11.

    Murphy KG. Postoperative Healing Complications Associated With Gore-Tex Periodontal Material. Part II. Effect of Complications on Regeneration. Int. J. Periodontics Restorative Dent. 1995;15(6):548-561.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Kim.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 9, pp. 352-356, September, 2020

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, E.V., Petronyuk, Y.S., Guseynov, N.A. et al. Biocompatibility and Bioresorption of 3D-Printed Polylactide and Polyglycolide Tissue Membranes. Bull Exp Biol Med 170, 356–359 (2021). https://doi.org/10.1007/s10517-021-05066-x

Download citation

Key Words

  • barrier membrane
  • guided bone regeneration
  • 3D printing
  • polylactide
  • polyglycolide