Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 6, pp 784–789 | Cite as

Injection of Multipotent Mesenchymal Stromal Cells as a Cause of Hemorrhages in the Regional Lymph Nodes: Experimental Study

  • I. V. Maiborodin
  • V. V. Morozov
  • A. A. Anikeev
  • N. F. Figurenko
  • R. V. Maslov
  • V. A. Matveeva
  • V. I. Maiborodina
Article

Hemorrhagic changes after subcutaneous injection of autologous bone marrow multipotent mesenchymal cells with transfected GFP gene and additionally stained cell membranes to WAG rats in the projection of ligated femoral vein were studied by fluorescent microscopy. Hemorrhages in tissues with experimental acute local venous occlusion were caused by a combination of venous hypertension with inflammation around the foreign body — the ligature used for ligation of the vein. Fibrin found in tissues together with erythrocytes in the hemorrhages could stimulate the formation of granulations and new vessels instead of damaged or thrombosed ones. Multipotent mesenchymal stromal cells and their detritus getting into the regional lymph nodes initiated immune reactions morphologically confirmed by stubborn hypertrophy and hyperplasia of the lymphoid nodules, hemorrhages, and manifest diapedesis of erythrocytes to the organ parenchyma and sinus system.

Key Words

multipotent mesenchymal stromal cells vein ligation hemorrhages lymph nodes angiogenesis 

References

  1. 1.
    Kuznetsova IV, Maiborodin IV, Shevela AI, Barannik MI, Manaev AA, Brombin AI, Maiborodina VI. Local tissue reaction to implantation of biodegradable suture materials. Bull. Exp. Biol. Med. 2014;157(3):390-394.Google Scholar
  2. 2.
    Maĭborodin IV, Kolesnikov IS, Kozodiĭ DM, Vybornov MS, Drovosekov MN. Submandibular lymph nodes of rats with arterial hypertension after mandible bone damage. Stomatologiya. 2010;89(5):11-14. Russian.Google Scholar
  3. 3.
    Maiborodin IV, Matveyeva VA, Maslov RV, Onopriyenko NV, Kuznetsova IV, Chastikin GA, Anikeyev AA. Some reactions of the regional lymph nodes of rats after implantation of multipotent stromal cells adsorbed on polyhydroxyalkanoate into a bone tissue defect. Morfologiya. 2016;149(2):21-26. Russian.Google Scholar
  4. 4.
    Maiborodin IV, Morozov VV, Matveeva VA, Anikeev AA, Maslov RV, Chastikin GA, Figurenko NF. Initial Stages of Angiogenesis after Acute Experimental Local Venous Outflow Disturbances and Application of Cell Technologies. Bull. Exp. Biol. Med. 2017;163(1):142-147.CrossRefPubMedGoogle Scholar
  5. 5.
    Maiborodin IV, Morozov VV, Novikova YaV, Matveyeva VA, Artemyeva LV, Matveyev AL, Khomeniuk SV, Marchukov SV. Morphological results of stromal stem cells of bone marrow origin into the thrombosed vein in experiment. Morfologiya. 2012;142(4):54-61. Russian.Google Scholar
  6. 6.
    Bartek J Jr, Abedi-Valugerdi G, Liska J, Nyström H, Andresen M, Mathiesen T. Intracranial hemorrhage due to intracranial hypertension caused by the superior vena cava syndrome. J. Clin. Neurosci. 2013;20(7):1040-1041.Google Scholar
  7. 7.
    Brennen WN, Nguyen H, Dalrymple SL, Reppert-Gerber S, Kim J, Isaacs JT, Hammers H. Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget. 2016;7(44):71,298-71,308.CrossRefGoogle Scholar
  8. 8.
    Chen YL, Sun CK, Tsai TH, Chang LT, Leu S, Zhen YY, Sheu JJ, Chua S, Yeh KH, Lu HI, Chang HW, Lee FY, Yip HK. Adipose-derived mesenchymal stem cells embedded in platelet-rich fibrin scaffolds promote angiogenesis, preserve heart function, and reduce left ventricular remodeling in rat acute myocardial infarction. Am. J. Transl. Res. 2015;7(5):781-803.Google Scholar
  9. 9.
    Chung SI, Lee SY, Ryogin U, Kamemitsu K. Affects of F XIII in wound-healing--Fibrin stability in tissues and cross linking of angiogenesis modulator, osteonectin to fibrin. Rinsho Byori. 1997;(Suppl. 104):50.Google Scholar
  10. 10.
    Gemmati D, Vigliano M, Burini F, Mari R, El Mohsein HH, Parmeggiani F, Serino ML. Coagulation Factor XIIIA (F13A1): Novel Perspectives in Treatment and Pharmacogenetics. Curr. Pharm. Des. 2016;22(11):1449-1459.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaijzel EL, Koolwijk P, van Erck MG, van Hinsbergh VW, de Maat MP. Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemost. 2006;4(9):1975-1981.Google Scholar
  12. 12.
    Prasad V, Baghai S, Gandhi D, Moeslein F, Jindal G. Cerebral Infarction due to Central Vein Occlusion in a Hemodialysis Patient. J. Neuroimaging. 2015;25(3):494-496.CrossRefPubMedGoogle Scholar
  13. 13.
    Zou X, Zhou L, Zhu W, Mao Y, Chen L. Effectiveness of 2-methoxyestradiol in alleviating angiogenesis induced by intracranial venous hypertension. J. Neurosurg. 2016;125(3):746-753.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Maiborodin
    • 1
  • V. V. Morozov
    • 1
  • A. A. Anikeev
    • 1
  • N. F. Figurenko
    • 1
  • R. V. Maslov
    • 1
  • V. A. Matveeva
    • 1
  • V. I. Maiborodina
    • 2
  1. 1.Center of New Medical Technologies, Institute of Chemical Biology and Fundamental MedicineSiberian Division of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Laboratory of Ultrastructural Bases of PathologyInstitute of Molecular Pathology and PathomorphologyNovosibirskRussia

Personalised recommendations