Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 6, pp 707–711 | Cite as

Electrophysiological Properties of Rat Vestibular Labyrinth and Their Effect on Parameters of Transmitted Voltage Pulses

  • V. P. Demkin
  • V. V. Udut
  • P. P. Shchetinin
  • M. V. Svetlik
  • S. V. Mel’nichuk
  • A. P. Shchetinina
  • M. O. Pleshkov
  • D. N. Starkov
  • O. V. Demkin
  • H. Kingma
Article
  • 23 Downloads

We propose a new approach to optimization of electrical stimulation of the vestibular nerve and improving the transfer function of vestibular implant. A mathematical model of the vestibular organ is developed based on its anatomy, the model premises, 3D-analysis of MRI and CT images, and mathematical description of physical processes underlying propagation of alternating electric current across the tissues of vestibular labyrinth. This approach was tested in vitro on the rat vestibular apparatus and had been examined anatomically prior to the development of its mathematical model and equivalent electrical circuit. The experimental and theoretical values of changes of the gain—phase characteristics of vestibular tissues in relation to location of the reference electrode obtained in this study can be used to optimize the electrical stimulation of vestibular nerve.

Key Words

vestibular implant in vitro vestibular apparatus anatomic structure mathematical model stimulating voltage pulses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voropayeva OF, Shokin YuI. Numerical simulation in medicine: formulations of the problems and some results of calculations. Vychislit. Tekhnol. 2012;17(4):29-55. Russian.Google Scholar
  2. 2.
    Demkin VP, Shchetinin PP, Mel’nichuk SV, Kingma G, van de Berg R Pleshkov MO, Starkov DN. Propagation of electric current in tissues of human vestibular labyrinth: improvement of vestibular implant. Izv. Vuzov. Fizika. 2017;60(11):152-157. Russian.Google Scholar
  3. 3.
    Zuev AL, Sudakov AI, Shakirov NV. Identical the electric model of biological objects. Ross. Zh. Biomekh. 2014;18(4):491-497. Russian.Google Scholar
  4. 4.
    Kotova AB, Kiforenko SI, Belov VM. Mathematical modeling in biology and medicine. Kibernetika Vychislit. Tekhnika. 2013;(174):47-55. Russian.Google Scholar
  5. 5.
    Nikolaev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG. Bioimpedance Analysis of Body Composition. Moscow, 2009. Russian.Google Scholar
  6. 6.
    Bradshaw AP, Curthoys IS, Todd MJ, Magnussen JS, Taubman DS, Aw ST, Halmagyi GM. A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology. J. Assoc. Res. Otolaryngol. 2010;11(2):145-159.CrossRefPubMedGoogle Scholar
  7. 7.
    Gong W, Merfeld DM. Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann. Biomed. Eng. 2000;28(5):572-581.CrossRefPubMedGoogle Scholar
  8. 8.
    Lionheart W, Polydorides N, Borsic A. The reconstruction problem. Electrical Impedance Tomography: Methods, History and Applications. Holder DS, ed. Manchester, 2004. P. 3-62.Google Scholar
  9. 9.
    Lloret-Villas A, Varusai TM, Juty N, Laibe C, Le NovÈre N, Hermjakob H, Chelliah V. The impact of mathematical modeling in understanding the mechanisms underlying neurodegeneration: evolving dimensions and future directions. CPT. Pharmacometrics Syst. Pharmacol. 2017;6(2):73-86.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramos Miguel A, Ramos Macías A, Viera Artiles J, Perez Zaballos MT. The Effect of Reference Electrode Position in Cochlear Implants. J. Int. Adv. Otol. 2015;11(3):222-228.CrossRefPubMedGoogle Scholar
  11. 11.
    Santos C.F, Belinha J, Gentil F, Parente M, Jorge RN. An alternative 3D numerical method to study the biomechanical behavior of the human inner ear semicircular canal. Acta Bioeng. Biomech. 2017;19(1):3-15.PubMedGoogle Scholar
  12. 12.
    van de Berg R, Guinand N, Nguyen TA, Ranieri M, Cavus-cens S, Guyot JP, Stokroos R, Kingma H, Perez-Fornos A. The vestibular implant: Frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front. Syst. Neurosci. 2015;8:255. doi:  https://doi.org/10.3389/fnsys.2014.00255.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Demkin
    • 1
  • V. V. Udut
    • 1
    • 2
  • P. P. Shchetinin
    • 1
  • M. V. Svetlik
    • 1
  • S. V. Mel’nichuk
    • 1
  • A. P. Shchetinina
    • 1
  • M. O. Pleshkov
    • 1
  • D. N. Starkov
    • 1
  • O. V. Demkin
    • 1
  • H. Kingma
    • 1
    • 3
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical CenterRussian Academy of SciencesTomskRussia
  3. 3.Department of Otorhinolaryngology and Head and Neck Surgery, Division of Balance Disorders, Faculty of Health Medicine and Life SciencesMaastricht University Medical Center, School for Mental Health and NeuroscienceMaastrichtthe Netherlands

Personalised recommendations