Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 693–700 | Cite as

Endogenous Regulators of the Immune System (sCD100, Malonic Dialdehyde, and Arginase)

  • A. N. Kazimirskii
  • G. V. Poryadin
  • Zh. M. Salmasi
  • L. Yu. Semenova
REVIEW

Tissue damage in various diseases, hypoxic conditions, and some pathologies are associated with production of endogenous factors such as the soluble form of the surface receptor CD100, malonic dialdehyde, and arginase and their release into circulation. These factors modulate functional state of lymphocytes in the immune system: potentiate activation of B lymphocytes, activate synthesis and secretion of IL-25 and IL-17 cytokines, and suppress proliferative activity of T lymphocytes, thus modulating immunological reactivity of the organism. Reactions of innate and adaptive immunity develop against the background of changed immunological reactivity, which should be taken into account in the development of pathogenetically substantiated therapy.

Key Words

inflammation reactivity sCD100 malonic dialdehyde arginase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bereznaya NM. Interleukin 25 (IL-17E) helps allergy but fights cancer. Tsitokiny Vospalenie. 2010;9(3):3-14. Russian.Google Scholar
  2. 2.
    Gurevich MA, Sturov NV. Nitric oxide deficiency and maintenance of vascular homeostasis: the role of mononitrates and problems of cytoprotection. Trudnyi Patsient. 2006;4(3):30-33. Russian.Google Scholar
  3. 3.
    El’skii VN, Vatutin NT, Kalinkina NV, Salakhova AM. The role of endothelial dysfunction in the genesis of cardiovascular diseases. Zh. Akad. Med. Nauk Ukrainy. 2008;14(1):51-62. Russian.Google Scholar
  4. 4.
    Zborovskaya IB, Galetskiy SA, Komel’kov AV. Microdomain forming proteins in oncogenesis. Uspekhi Mol. Onkol. 2016;3(3):16-29. Russian.CrossRefGoogle Scholar
  5. 5.
    Kazimirskii AN, Podyadin GV, Salmasi ZhM.Mechanisms of development of immunodeficiency in nonspecific inflammation of infectious genesis. Patol. Fiziol. Eksp. Ter. 2003;(3):23-26. Russian.Google Scholar
  6. 6.
    Porjadin GV, Salmasi ZM, Kazimirskij AN, Rjabinina ZV, Lychkova AE. Patent RU No. 2389023. Method for evaluating effectiveness of treatment of bronchial asthma. Bull. No. 13. Published May 10, 2010.Google Scholar
  7. 7.
    Porjadin GV, Sharpan IuV, Orshanko AM, Salmasi JV, Kazimirsky AN, Latisheva TV. Immunological characteristics of subjects with the latent sensibilization. Ross. Immunol. Zh. 2009;3(2):177-183. Russian.Google Scholar
  8. 8.
    Porjadin GV, Scharpan IuV, Salmasi JM, Orschanko AM. Immunological Diagnostics of the Latent Sensibilization — Problems and Achievement. Ross. Immunol. Zh. 2010;4(2):123-128. Russian.Google Scholar
  9. 9.
    Salmasi JM, Poryadin GV, Alieva ZO, Kazimirskiy AN. Characteristics of surface receptors of blood lymphocytes in patients with atopic dermatitis. Allergol. Immunol. 2004;5(1):54-70. Russian.Google Scholar
  10. 10.
    Semenova LYu, Kazimirskii AN, Salmasi ZhM, Poryadin GV. Mechanisms of the immunotropic effect of the medicinal composition “Taban-arshan” (Tibetan medicine) on lymphocytes of patients with early rheumatoid arthritis and atopic bronchial asthma. Patol. Fiziol. Eksp. Ter. 2005;(1):23-25. Russian.Google Scholar
  11. 11.
    Semenova LYu, Salmasi ZhM, Kazimirskii AN, Poryadin GV. Taban-Arshan: Immunocorrector in Atopic Bronchial Asthma. Bull. Exp. Biol. Med. 2004;138(1):65-66.CrossRefPubMedGoogle Scholar
  12. 12.
    Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J. Biol. Chem. 2007;282(9):6899-6905.CrossRefPubMedGoogle Scholar
  13. 13.
    Binmadi NO, Proia P, Zhou H, Yang YH, Basile JR. Rhomediated activation of PI(4)P5K and lipid second messengers is necessary for promotion of angiogenesis by Semaphorin 4D. Angiogenesis. 2011;14(3):309-319.CrossRefPubMedGoogle Scholar
  14. 14.
    Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul. Pharmacol. 2008;49(4-6):134-140.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen B, Calvert AE, Cui H, Nelin LD. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009;297(6):L1151-L1159.Google Scholar
  16. 16.
    Chen B, Calvert AE, Meng X, Nelin LD. Pharmacologic agents elevating cAMP prevent arginase II expression and proliferation of pulmonary artery smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 2012;47(2):218-226.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davis JS, Anstey NM. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and metaanalysis. Crit. Care Med. 2011;39(2):380-385.CrossRefPubMedGoogle Scholar
  18. 18.
    Fabian E, Pölöskey P, Kósa L, Elmadfa I, Réthy LA. Nutritional supplements and plasma antioxidants in childhood asthma. Wien. Klin. Wochenschr. 2013;125(11-12):309-315.CrossRefPubMedGoogle Scholar
  19. 19.
    Feldmeyer N, Wabnitz G, Leicht S, Luckner-Minden C, Schiller M, Franz T, Conradi R, Kropf P, Müller I, Ho AD, Samstag Y, Munder M. Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. Int. Immunol. 2012;24(5):303-313.CrossRefPubMedGoogle Scholar
  20. 20.
    Golob MJ, Tabima DM, Wolf GD, Johnston JL, Forouzan O, Mulchrone AM, Kellihan HB, Bates ML, Chesler NC. Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension. J. Biomech. 2017;55:92-98.CrossRefPubMedGoogle Scholar
  21. 21.
    Hamze M, Desmetz C, Berthe ML, Roger P, Boulle N, Brancherau P, Picard E, Guzman C, Tolza C, Guglielmi P. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol. 2013;191(6):3006-3016.CrossRefPubMedGoogle Scholar
  22. 22.
    Itoh Y. MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life. 2006;58(10):589-596.CrossRefPubMedGoogle Scholar
  23. 23.
    Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M. Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep. 2006;7(7):704-709.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J. Clin. Invest. 2002;110(10):1539-1548.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kao CC, Wedes SH, Hsu JW, Bohren KM, Comhair SA, Jahoor F, Erzurum SC. Arginine metabolic endotypes in pulmonary arterial hypertension. Pulm. Circ. 2015;5(1):124-134.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kato S, Kubota K, Shimamura T, Shinohara Y, Kobayashi N, Watanabe S, Yoneda M, Inamori M, Nakamura F, Ishiguro H, Nakaigawa N, Nagashima Y, Taguri M, Kubota Y, Goshima Y, Morita S, Endo I, Maeda S, Nakajima A, Nakagama H. Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer. Cancer Sci. 2011;102(11):2029-2037.CrossRefPubMedGoogle Scholar
  27. 27.
    Kovamees O, Shemyakin A, Eriksson M, Angelin B, Pernow J. Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. J. Intern. Med. 2016;279(5):477-484.CrossRefPubMedGoogle Scholar
  28. 28.
    Krause BJ, Hernandez C, Caniuguir A, Vasquez-Devaud P, Carrasco-Wong I, Uauy R, Casanello P. Arginase-2 is cooperatively up-regulated by nitric oxide and histone deacetylase inhibition in human umbilical artery endothelial cells. Biochem. Pharmacol. 2016;99:53-59.CrossRefPubMedGoogle Scholar
  29. 29.
    Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT. Immune evasion by helicobacter pylori is mediated by induction of macrophage arginase II. J. Immunol. 2011;186(6):3632-3641.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu B, Ma Y, Yi J, Xu Z, Zhang Y.S, Zhang C, Zhuang R, Yu H, Wang J, Yang A, Zhang Y, Jin B. Elevated plasma soluble Sema4D/CD100 levels are associated with disease severity in patients of hemorrhagic fever with renal syndrome. PLoS One. 2013;8(9):e73958. doi:  https://doi.org/10.1371/journal.pone.0073958.
  31. 31.
    Liu Y, Zhou H, Ma L, Hou Y, Pan J, Sun C, Yang Y, Zhang J. MiR-214 suppressed ovarian cancer and negatively regulated semaphorin 4D. Tumour Biol. 2016;37(6):8239-8248.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Z, Zhang C, Li Q, Xiao L, Kong X, Xu X, Shi B. Effects of different processing methods and durations of blood specimens on the level of soluble CD100 in peripheral blood. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(10):1375-1377.PubMedGoogle Scholar
  33. 33.
    Maleki KT, Cornillet M, Björkström NK. Soluble SEMA4D/CD100: a novel immunoregulator in infectious and inflammatory diseases. Clin. Immunol. 2016;163:52-59.CrossRefPubMedGoogle Scholar
  34. 34.
    Mou P, Zeng Z, Li Q, Liu X, Xin X, Wannemacher KM, Ruan C, Li R, Brass LF, Zhu L. Identification of a calmodulin-binding domain in Sema4D that regulates its exodomain shedding in platelets. Blood. 2013;121(20):4221-4230.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Munder M, Choi BS, Rogers M, Kropf P. L-arginine deprivation impairs leishmania major-specific T-cell responses. Eur. J. Immunol. 2009;39(8):2161-2172.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Natarajan K, Mathialagan GD, Raghavan S, Shanmugam N. The advanced lipoxidation end product precursor malondialdehyde induces IL-17E expression and skews lymphocytes to the th17 subset. Cell. Mol. Biol. Lett. 2015;20(4):647-662.CrossRefPubMedGoogle Scholar
  37. 37.
    Natorska J, Marek G, Sadowski J, Undas A. Presence of B cells within aortic valves in patients with aortic stenosis: relation to severity of the disease. J. Cardiol. 2016;67(1):80-85.CrossRefPubMedGoogle Scholar
  38. 38.
    Nguyen MC, Park JT, Jeon YG, Jeon BH, Hoe KL, Kim YM, Lim HK, Ryoo S. Arginase inhibition restores peroxynitriteinduced endothelial dysfunction via L-arginine-dependent endothelial nitric oxide synthase phosphorylation. Yonsei Med. J. 2016;57(6):1329-1338.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Oinuma I, Ito Y, Katoh H, Negishi M. Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons. J. Biol. Chem. 2010;285(36):28,200-28,209.CrossRefGoogle Scholar
  40. 40.
    Pennings GJ, Kritharides L. CD147 in cardiovascular disease and thrombosis. Semin. Thromb. Hemost. 2014;40(7):747-755.CrossRefPubMedGoogle Scholar
  41. 41.
    Pera T, Zuidhof AB, Smit M, Menzen MH, Klein T, Flik G, Zaagsma J, Meurs H, Maarsingh H. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther. 2014;349(2):229-238.CrossRefPubMedGoogle Scholar
  42. 42.
    Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe. 2012;12(3):313-323.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rayaman P, Rayaman E, Cevikbaş A, Demirtunç R, Sehirli A.O, Alagöz SG, Gürer US. Effect of antibiotics on polymorphonuclear leukocyte functions and myeloperoxidase activity, glutathione and malondialdehyde levels in allergic asthma. Pol. J. Microbiol. 2015;64(1):69-72.PubMedGoogle Scholar
  44. 44.
    Reade MC, Clark MF, Young JD, Boyd CA. Increased cationic amino acid flux through a newly expressed transporter in cells overproducing nitric oxide from patients with septic shock. Clin. Sci. (Lond.). 2002;102(6):645-650.CrossRefGoogle Scholar
  45. 45.
    Shanks K, Nkyimbeng-Takwi EH, Smith E, Lipsky MM, DeTolla LJ, Scott DW, Keegan AD, Chapoval SP. Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammation. Mol. Immunol. 2013;56(4):480-487.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sivaranjani N, Rao SV, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. 2013;7(12):2683-2585.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat. Immunol. 2008;9(1):17-23.CrossRefPubMedGoogle Scholar
  48. 48.
    Wannemacher KM, Zhu L, Jiang H, Fong KP, Stalker TJ, Lee D, Tran AN, Neeves KB, Maloney S, Kumanogoh A, Kikutani H, Hammer DA, Diamond SL, Brass LF. Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood. 2010;116(25):5707-5715.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wijnands KA, Meesters DM, van Barneveld KW, Visschers RG, Briedé JJ, Vandendriessche B, van Eijk HM, Bessems BA, van den Hoven N, von Wintersdorff CJ, Brouckaert P, Bouvy ND, Lamers WH, Cauwels A, Poeze M. Citrulline supplementation improves organ perfusion and arginine availability under conditions with enhanced arginase activity. Nutrients. 2015;7(7):5217-5238.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xaus J, Comalada M, Valledor AF, Lloberas J, López-Soriano F, Argilés JM, Bogdan C, Celada A. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood. 2000;95(12):3823-3831.PubMedGoogle Scholar
  51. 51.
    Xiang L, You T, Chen J, Xu W, Jiao Y. Serum soluble semaphorin 4D is associated with left atrial diameter in patients with atrial fibrillation. Med. Sci. Monit. 2015;21:2912-2917.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu JY, Chang NB, Li T, Jiang R, Sun XL, He YZ, Jiang J. Endothelial cells inhibit the angiotensin II induced phenotypic modulation of rat vascular adventitial fibroblasts. J. Cell. Biochem. 2017;118(7):1921-1927.CrossRefPubMedGoogle Scholar
  53. 53.
    Yadav AS, Saini M. Evaluation of systemic antioxidant level and oxidative stress in relation to lifestyle and disease progression in asthmatic patients. J. Med. Biochem. 2016;35(1):55-62.PubMedGoogle Scholar
  54. 54.
    Yoshida Y, Ogata A, Kang S, Ebina K, Shi K, Nojima S, Kimura T, Ito D, Morimoto K, Nishide M, Hosokawa T, Hirano T, Shima Y, Narazaki M, Tsuboi H, Saeki Y, Tomita T, Tanaka T, Kumanogoh A. Semaphorin 4D contributes to rheumatoid athritis by inducing inflammatory cytokine production: pathogenic and therapeutic implications. Arthritis Rheumatol. 2015;67(6):1481-1490.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang Y, Xu J. MiR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression. Biochem. Biophys. Res. Commun. 2016;473(1):342-348.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhao YL, Cao J, Shang JH, Liu YP, Khan A, Wang HS, Qian Y, Liu L, Ye M, Luo XD. Airways antiallergic effect and pharmacokinetics of alkaloids from Alstonia scholaris. Phytomedicine. 2017;27:63-72.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis. 2012;15(3):391-407.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, Tamagnone L, Wagner DD, Milla ME, Brass LF. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc. Natl. Acad. Sci. USA. 2007;104(5):1621-1626.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhu L, Pan XY, Guan ZB, Guo Y, Li MJ, Zeng WB, Huang F. Expression of Sema4D in patients with cerebral infarction and its clinical significance. Zhonghua Xue Ye Xue Za Zhi. 2012;33(9):729-732.PubMedGoogle Scholar
  60. 60.
    Zhu L, Stalker TJ, Fong KP, Jiang H, Tran A, Crichton I, Lee EK, Neeves KB, Maloney SF, Kikutani H, Kumanogoh A, Pure E, Diamond SL, Brass LF. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009;29(7):1039-1045.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhu X, Song Z, Zhang S, Nanda A, Li G. CD147: a novel modulator of inflammatory and immune disorders. Curr. Med. Chem. 2014;21(19):2138-2145.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhu Z, Luo Y, Yu J, Gao J, Zhang Y, Xiao C, Zhang C, Wang G, Liu Y, Fu M, Yao X, Li W. Sema4D is required in both the adaptive and innate immune responses of contact hypersensitivity. Mol. Immunol. 2016;78:98-104.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. N. Kazimirskii
    • 1
  • G. V. Poryadin
    • 1
  • Zh. M. Salmasi
    • 1
  • L. Yu. Semenova
    • 1
  1. 1.Department of Pathology and Clinical PathologyN. I. Pirogov Russian National Research Medical University of the Ministry of Health of RussiaMoscowRussia

Personalised recommendations