Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 636–640 | Cite as

Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus

  • T. M. Sokolova
  • V. V. Poloskov
  • A. N. Shuvalov
  • I. A. Rudneva
  • T. A. Timofeeva
IMMUNOLOGY AND MICROBIOLOGY

In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

Key Words

macrophages influenza A viruses genes TLR7, RIG1 cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lvov DK, Burtseva EI, Prilipov AG, Bazarova MV, Kolobukhina LV, Merkulova LN, Malyshev NA, Deryabin PG, Fedyakina IT, Sadykova GK, Usachev EV, Shchelkanov MYu, Shevchenko ES, Trushakova SV, Ivanova VT, Belyakova NV, Oskerko TA, Aliper TI. The 24 May, 2009 isolation of the first A/IIV-Moscow/01/2009 (H1N1)swl strain similar to swine A(H1N1) influenza virus from the first Moscow case detected on May 21, 2009, and its deposit in the State Collection of Viruses (SCV No. 2452 dated May 24, 2009). Vopr. Virusol. 2009;54(5):10-14. Russian.Google Scholar
  2. 2.
    Gorelova IS, Sklyar LF, Markelova EV, Simakova AI, Zenin IV. Extracellular matrix condition in case of hcvassociated liver fibrosis. Med. Immunol. 2017;19(1):27-34. Russian.CrossRefGoogle Scholar
  3. 3.
    Sokolova TM, Poloskov VV, Shuvalov AN, Rudneva IA, Ershov FI. Avian recombinant virus H5N1 influenza (A/Vietnam/1203/04) and its escape-mutant m13(13) induce early signaling reactions of the immunity in human lymphocytes. Vopr. Virusol. 2016;61(1):21-26. Russian.PubMedGoogle Scholar
  4. 4.
    Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010;5(1):e8668. doi:  https://doi.org/10.1371/journal.pone.0008668.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fouchier RA, Bestebroer TM, Herfst S, Van Der Kemp L, Rimmelzwaan GF, Osterhaus AD. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J. Clin. Microbiol. 2000;38(11):4096-4101.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 2014;14(5):315-328.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Juhas U, Ryba-Stanisławowska M, Szargiej P, Myśliwska J. Different pathways of macrophage activation and polarization. Postepy Hig. Med. Dosw. (Online). 2015;69:496-502.CrossRefGoogle Scholar
  8. 8.
    Marvin SA, Russier M, Huerta CT, Russell CJ, Schultz-Cherry S. Influenza overcomes cellular blocks to productively replicate impacting macrophage function. J. Virol. 2017;91(2):pii.e01417-16. doi: https://doi.org/10.1128/JVI.01417-16.
  9. 9.
    Pulendran B, Maddur M.S. Innate immune sensing and response to influenza. Curr. Top. Microbiol. Immunol. 2015;386:23-71.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramos I, Fernandez-Sesma A. Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs. Front. Immunol. 2016;6:361. doi: https://doi.org/10.3389/fimmu.2015.00361.Google Scholar
  11. 11.
    Rudneva IA, Timofeeva TA, Ignatieva AV, Shilov AA, Ilyushina NA. Effects of hemagglutinin amino acid substitutions in H9 influenza A virus escape mutants. Arch. Virol. 2016;161(12):3515-3520.CrossRefPubMedGoogle Scholar
  12. 12.
    Short KR, Brooks AG, Reading PC, Londrigan SL. The fate of influenza A virus infection of human macrophages and dendritic cells. J. Gen. Virol. 2012;93(Pt 11):2315-2325.CrossRefPubMedGoogle Scholar
  13. 13.
    Smirnov Y.A, Lipatov A.S, Van Beek R, Gitelman A.K, Osterhaus A.D, Claas E.C. Characterization of adaptation of an avian influenza A (H5N2) virus to mammalian host. Acta Virol. 2000;44(1):1-8.PubMedGoogle Scholar
  14. 14.
    Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer. 1980;26(2):171-176.CrossRefPubMedGoogle Scholar
  15. 15.
    Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, García-Sastre A, Weber F. Incoming RNA virus nucleocapsids containing a 5-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe. 2013;13(3):336-346.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. M. Sokolova
    • 2
  • V. V. Poloskov
    • 1
  • A. N. Shuvalov
    • 1
  • I. A. Rudneva
    • 2
  • T. A. Timofeeva
    • 2
  1. 1.Department of Interferons, Laboratory of Physiology of VirusesMoscowRussia
  2. 2.Subdivision of D. I. Ivanovsky Research Institute of Virology, N. F. Gamaleya Research Center of Epidemiology and MicrobiologyMinistry of Health of Russian FederationMoscowRussia

Personalised recommendations