Skip to main content
Log in

Modulation of GABA- and Glycine-Activated Ionic Currents with Semax in Isolated Cerebral Neurons

  • PHARMACOLOGY AND TOXICOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The concentration-clamp experiments with neurons isolated from the rat brain showed that nootropic and neuroprotective drug Semax added to perfusion solution at concentration of 1 μM augmented the amplitude of GABA-activated ionic currents in cerebellum Purkinje cells by 147±13%. In addition, Semax in perfusion solution (0.1 and 1 μM) diminished the amplitude of glycine-activated chloride currents in hippocampal pyramidal neurons down to 68 and 43% control level, respectively. Both potentiating and inhibitory effects developed slowly, and they were poorly reversible, which indicated a probable implication of second messengers in the observed phenomena. Semax accelerated the falling edge of glycine-activated current both after a short-term co-application with agonist and after addition of this peptide into perfusion solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashmarin IP, Nezavibatko VN, Myasoedov NF, Kamensky AA, Grivennikov IA, Ponomareva-Stepnaya MA, Andreeva LA, Kaplan AY, Koshelev VB, Ryasina TV. Nootropic analogue of adrenocorticotropin 4-10-Semax: (the experience of design and investigation over 15 years). Zh. Vyssh. Nervn. Deyat. 1997;47(2):429-430. Russian.

  2. V’unova TV, Shevchenko KV, Shevchenko VP, Bobrov MYu, Bezuglov VV, Myasoedov NF. Binding of Regulatory Neuropeptide [3H] Semax, Labeled in Terminal Pro, to Plasma Membranes of the Rat Forebrain. Neirokhimiya. 2006;23(1):57-62. Russian.

    Google Scholar 

  3. Gusev EI, Skvortsova VI, Myasoedov NF, Nezavibat’ko VN, Zhuravleva EYu, Vanichkin AV. Effectiveness of Semax in acute period of hemispheric ischemic stroke (clinical and electrophysiological study). Zh. Nevrol. Psikhiatr. 1997;96(6):26-54. Russian.

    Google Scholar 

  4. Gusev EI, Skvortsova VI, Chukanova EI. Semax in prevention of disease progress and development of exacerbations in patients with cerebrovascular insufficiency. Zh. Nevrol. Psikhiatr. 2005;105(2):35-40.

    CAS  Google Scholar 

  5. Shuvaev AN, Salmin VV, Kuvacheva NV, Pozhilenkova EA, Salmina AB. Modern tendencies in the development of the patchclamp technique: new opportunities for neuropharmacology and neurobiology. Annaly Klin. Eksp. Nevrol. 2015;9(4):54-58. Russian.

    Google Scholar 

  6. Catania A, Gatti S, Colombo G, Lipton JM. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol. Rev. 2004;56(1):1-29.

    Article  CAS  PubMed  Google Scholar 

  7. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468:305-309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cone RD. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 2005;8(5):571-578.

    Article  CAS  PubMed  Google Scholar 

  9. Giuliani D, Ottani A, Neri L, Zaffe D, Grieco P, Jochem J, Cavallini GM, Catania A, Guarini S. Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Prog. Neurobiol. 2017;148:40-56.

    Article  CAS  PubMed  Google Scholar 

  10. Hiu T, Farzampour Z, Paz JT, Wang EH, Badgely C, Olson A, Micheva KD, Wang G, Lemmens R, Tran KV, Nishiyama Y, Liang X, Hamilton SA, O’Rourke N, Smith SJ, Huguenard JR, Bliss TM, Steinberg GK. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain. 2016;139(Pt 2):468-480.

    Article  PubMed  Google Scholar 

  11. Lilly SM, Zeng XJ, Tietz EI. Role of protein kinase A in GABAA receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment. J. Neurochem. 2003;85(4):988-998.

    Article  CAS  PubMed  Google Scholar 

  12. McDonald BJ, Amato A, Connolly CN, Benke D, Moss SJ, Smart TG. Adjacent phosphorylation sites on GABAA receptor beta subunits determine regulation by cAMPdependent protein kinase. Nat. Neurosci. 1998;1(1):23-28.

    Article  CAS  PubMed  Google Scholar 

  13. Nusser Z, Sieghart W, Mody I. Differential regulation of synaptic GABAA receptors by cAMP-dependent protein kinase in mouse cerebellar and olfactory bulb neurones. J. Physiol. 1999;521(Pt 2):421-435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ono Y, Saitow F, Konishi S. Differential modulation of GABAA receptors underlies postsynaptic depolarization- and purinoceptor-mediated enhancement of cerebellar inhibitory transmission: a non-Stationary fluctuation analysis study. PLoS One. 2016;11(3):e0150636. doi: https://doi.org/10.1371/journal.pone.0150636.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu TL, Gong N. Glycine and glycine receptor signaling in hippocampal neurons: diversity, function and regulation. Prog. Neurobiol. 2010;91(4):349-361.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sharonova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 164, No. 11, pp. 564-569, November, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharonova, I.N., Bukanova, Y.V., Myasoedov, N.F. et al. Modulation of GABA- and Glycine-Activated Ionic Currents with Semax in Isolated Cerebral Neurons. Bull Exp Biol Med 164, 612–616 (2018). https://doi.org/10.1007/s10517-018-4043-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4043-8

Key Words

Navigation