Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 5, pp 605–608 | Cite as

Evaluation of DNA Damage in Experimental Preeclampsia by Comet Assay

  • S. A. Kolesnikova
  • A. I. Eremina
  • M. V. Kustova
  • E. A. Muzyko
  • G. P. Dudchenko
  • V. N. Perfilova
  • V. Ye. Verovskii
  • I. N. Tyurenkov
  • O. V. Ostrovskii
BIOPHYSICS AND BIOCHEMISTRY
  • 8 Downloads

Experimental preeclampsia induced by substitution of drinking water with 1.8% NaCl during pregnancy was associated with an increase in the level of DNA damage in fetal brain and placenta measured by DNA comet assay by 35.7 and 27.8 times, respectively, in comparison with physiological pregnancy.

Key Words

experimental preeclampsia DNA damage DNA comet assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zabrodina VV, Shreder ED, Shreder OV, Durnev AD, Seredenin SB. Effect of Afobazole and Betaine on DNA Damage in Placental and Embryonic Tissues of Rats with Experimental Streptozocin Diabetes. Bull. Exp. Biol. Med. 2015;159(6):757-760.Google Scholar
  2. 2.
    Ivanova LB, Karamysheva VI, Perfilova VN, Tiurenkov IN. The effect of GABA-derivatives on endothelial function in rats with experimental preeclampsia. Problemy Reproductsii. 2012;(1):28-30. Russian.Google Scholar
  3. 3.
    Tyurenkov IN, Perfilova VN, Lashchenova LI, Zhakupova GA, Lebedeva SA. Analysis of mental functions of the offspring from rats with experimental preeclampsia during postnatal ontogeny. Zh. Vyssh. Nervn. Deyat. 2016;66(4):499-510. Russian.Google Scholar
  4. 4.
    Tyurenkov IN, Perfilova VN, Popova TA, Ivanova LB, Prokofiev II, Gulyaeva OV, Stepa LI. Changes in oxidant and antioxidant status of females with experimental gestosis under the effect of GABA derivatives. Bull. Exp. Biol. Med. 2013;155(3):363-365.CrossRefPubMedGoogle Scholar
  5. 5.
    Tyurenkov IN, Perfilova VN, Popova TA, Karamysheva VI, Reznikova LB, Prokof’ev II, Mokrousov IS, Grindin EI, Mikhailova LI, Berestovitskaya VM, Vasil’eva OS. Effect of GABA Derivative – RSMU-151 on the Development of Oxidative Stress in Rats with Experimental Gestosis. Eksp. Klin. Farmakol. 2013;76(12):11-14. Russian.Google Scholar
  6. 6.
    Tyurenkov IN, Lova VN, Reznikova LB, Smirnova LA, Ryabukha AF, Suchkov EA, Kuznetsov KA. GABA derivatives citrocard and salifen reduce the intensity of experimental gestosis. Bull. Exp. Biol. Med. 2014;157(1):42-44.CrossRefPubMedGoogle Scholar
  7. 7.
    Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010;42(10):1634-1650.CrossRefPubMedGoogle Scholar
  8. 8.
    Beauséjour A, Bibeau K, Lavoie JC, St-Louis J, Brochu M. Placental oxidative stress in a rat model of preeclampsia. Placenta. 2007;28(1):52-58.CrossRefPubMedGoogle Scholar
  9. 9.
    Bright J, Aylott M, Bate S, Geys H, Jarvis P, Saul J, Vonk R. Recommendations on the statistical analysis of the Comet assay. Pharm. Stat. 2011;10(6):485-493.CrossRefPubMedGoogle Scholar
  10. 10.
    Chekir C, Nakatsuka M, Noguchi S, Konishi H, Kamada Y, Sasaki A, Hao L, Hiramatsu Y. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta. 2006;27(2-3):225-233.CrossRefPubMedGoogle Scholar
  11. 11.
    de Lucca L, Rodrigues F, Jantsch LB, Kober H, Neme WS, Gallarreta FM, Gonçalves TL. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia. Biomed. Pharmacother. 2016;84:224-229.CrossRefPubMedGoogle Scholar
  12. 12.
    Fujimaki A, Watanabe K, Mori T, Kimura C, Shinohara K, Wakatsuki A. Placental oxidative DNA damage and its repair in preeclamptic women with fetal growth restriction. Placenta. 2011;32(5):367-372.CrossRefPubMedGoogle Scholar
  13. 13.
    Tadesse S, Kidane D, Guller S, Luo T, Norwitz NG, Arcuri F, Toti P, Norwitz ER. In vivo and in vitro evidence for placental DNA damage in preeclampsia. PLoS One. 2014;9(1):e86791. doi:  https://doi.org/10.1371/journal.pone.0086791 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations in the preeclamptic placenta. PLoS One. 2013;8(6):e65498. doi:  https://doi.org/10.1371/journal.pone.0065498.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yan JY, Xu X. Relationships between concentrations of free fatty acid in serum and oxidative-damage levels in placental mitochondria and preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2012;47(6):412-417.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Kolesnikova
    • 1
  • A. I. Eremina
    • 1
  • M. V. Kustova
    • 1
  • E. A. Muzyko
    • 1
  • G. P. Dudchenko
    • 1
  • V. N. Perfilova
    • 1
  • V. Ye. Verovskii
    • 1
  • I. N. Tyurenkov
    • 2
  • O. V. Ostrovskii
    • 1
  1. 1.Department of Theoretical Biochemistry with Course of Clinical BiochemistryVolgogradRussia
  2. 2.Department of Pharmacology and Biopharmaceutics, Doctor Improvement Faculty, Volgograd State Medical University of the Ministry of Health of Russian FederationVolgogradRussia

Personalised recommendations