Skip to main content
Log in

Analysis of the Basic Characteristics of Osteogenic and Chondrogenic Cell Lines Important for Tissue Engineering Implants

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We isolated and characterized cultures of bone and cartilage tissue cells of laboratory minipigs. The size and morphological features of adherent osteogenic and chondrogenic cells were specified. During long-term culturing under standard conditions, the studied cultures expressed specific markers that were detected by immunohistochemical staining: alkaline phosphatase and calcium deposits in osteoblasts and type II collagen and cartilage extracellular matrix in chondrogenic cells. Proliferative potential (mitotic index) of both cell types was 4.64% of the total cell number. Cell motility, i.e. the mean velocity of cell motion was 49 pixels/h for osteoblasts and 47 pixels/h for chondroblasts; the mean migration distance was 2045 and 2118 pixels for chondroblasts and osteoblasts, respectively. The obtained cell lines are now used as the control for evaluation of optimal biocompatibility of scaffold materials in various models. Characteristics of the motility of the bone and cartilage tissue cells can be used for modeling and estimation of the rate of cells population of 3D scaffolds made of synthetic and biological polymers with different internal structure and physicochemical properties during designing in vitro tissue implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deev RV, Isaev AA, Tsupkina NV, Pinaev GP, Bozo IJ, Grebnev AR, Kaligin MS. The tissue engineering bone: a methodological basis and biological properties. Geny Kletki. 2011;6(1):62-67. Russian.

    Google Scholar 

  2. Komlev VS, Sergeeva NS, Fedotov AYu, Sviridova IK, Kirsanova VA, Akhmedova SA, Teterina AYu, Zobov YuV, Kuvshinova EA, Shanskii YaD, Barinov SM. Analysis of physicochemical and biological properties of composite alginate-calcium phosphate matrices intended for the use in prototyping technologies for replacement of bone defects Materialovedenie. 2016;(3):38-42. Russian.

  3. Nashchekina YA, Nikonov PO, Mikhailov VM, Pinaev GP. Distribution of bone-marrow stromal cells in a 3D scaffold depending on the seeding method and the scaffold inside a surface modification. Cell Tissue Biol. 2014;8(4):313-320.

    Article  Google Scholar 

  4. Cao X, Lin Y, Driscoll TP, Franco-Barraza J, Cukierman E, Mauck RL, Shenoy VB. A chemomechanical model of matrix and nuclear rigidity regulation of focal adhesion size. Biophys J. 2015;109(9):1807-1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Santis R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, Wilde C.J, Ambrosio L. Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J. Biomed. Nanotechnol. 2015;11(7):1236-1246.

    Article  PubMed  Google Scholar 

  6. Di Silvio L, Gurav N. Osteoblasts. Human Cell Culture. Koller MR, Palsson BO, Masters JRW, eds. London, 2001. P. 221-241.

  7. Dillon JP, Waring-Green VJ, Taylor AM, Wilson PJ, Birch M, Gartland A, Gallagher JA. Primary human osteoblast cultures. Methods Mol. Biol. 2012;816:3-18.

    Article  CAS  PubMed  Google Scholar 

  8. Hadjicharalambous C, Buyakov A, Buyakova S, Kulkov S, Chatzinikolaidou M. Porous alumina, zirconia and alumina/zirconia for bone repair: fabrication, mechanical and in vitro biological response. Biomed. Mater. 2015;10(2). ID 025012. doi: https://doi.org/10.1088/1748-6041/10/2/025012.

  9. Hadjicharalambous C, Mygdali E, Prymak O, Buyakov A, Kulkov S, Chatzinikolaidou M. Proliferation and osteogenic response of MC3T3-E1 pre-osteoblastic cells on porous zirconia ceramics stabilized with magnesia or yttria. J. Biomed. Mater. Res. A. 2015;103(11):3612-3624.

    Article  CAS  PubMed  Google Scholar 

  10. Huang L, Cai X, Li H, Xie Q, Zhang M, Yang C. The effects of static pressure on chondrogenic and osteogenic differentiation in condylar chondrocytes from temporomandibular joint. Arch. Oral Biol. 2015;60(4):622-630.

    Article  CAS  PubMed  Google Scholar 

  11. Iandolo D, Ravichandran A, Liu X, Wen F, Chan JK, Berggren M, Teoh SH, Simon DT. Development and characterization of organic electronic scaffolds for bone tissue engineering. Adv. Healthc. Mater. 2016;5(12):1505-1512.

    Article  CAS  PubMed  Google Scholar 

  12. Khang G. Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine. Boca Raton, 2012. P. 589-606.

  13. Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone. 2015;74:76-82.

    Article  CAS  PubMed  Google Scholar 

  14. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230-241.

    Article  CAS  PubMed  Google Scholar 

  15. Selmeczi D, Mosler S, Hagedorn PH, Larsen NB, Flyvbjerg H. Cell motility as persistent random motion: theories from experiments. Biophys. J. 2005;89(2):912-931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 2015;11(4):213-222.

    Article  CAS  PubMed  Google Scholar 

  17. Tsekov R, Lensen M. Brownian motion and temperament of living cells. Chin. Phys. Lett. 2013;30(7):ID 070501.

  18. Tsiridis E, Gurav N, Bailey G, Sambrook R, Di Silvio L. A novel ex vivo culture system for studying bone repair. Injury. 2006;37(Suppl. 3):S10-S17.

    Article  PubMed  Google Scholar 

  19. Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly(ε-caprolactone)/hydroxyapatite/collagen scaffolds. J. Transl Med. 2015;13:152. doi: https://doi.org/10.1186/s12967-015-0499-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yin B, Ma P, Chen J, Wang H, Wu G, Li B, Li Q, Huang Z, Qiu G, Wu Z. Hybrid macro-porous titanium ornamented by degradable 3D Gel/nHA micro-scaffolds for bone tissue regeneration. Int. J. Mol. Sci. 2016;17(4):575. doi: https://doi.org/10.3390/ijms17040575.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Astakhova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 249-257, October, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhova, N.M., Korel’, A.V., Shchelkunova, E.I. et al. Analysis of the Basic Characteristics of Osteogenic and Chondrogenic Cell Lines Important for Tissue Engineering Implants. Bull Exp Biol Med 164, 561–568 (2018). https://doi.org/10.1007/s10517-018-4032-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4032-y

Key Words

Navigation