Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 3, pp 390–393 | Cite as

Collagen Implant and Mononuclear Cells of Umbilical Blood Allow the Restore of Movements of Hind Limbs after Removing the Site of Spinal Cord

  • S. I. Ryabov
  • M. A. Zvyagintseva
  • E. O. Osidak
  • V. A. Smirnov
Article
  • 15 Downloads

Replacement of the removal site of the spinal cord on a collagen implant restores the motor function of the hind limbs in rats to the level of movements in the two joints for 8 weeks. After intravenous administration of mononuclear cells of human umbilical blood, recovery accelerated, significantly improved to the level of motion in the three joints, and there is a tendency to improve further recovery of movements.

Key Words

spinal cord trauma cell therapy mononuclear cells of umbilical blood collagen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryabov SI, Zvyagintseva MA, Pavlovich ER, Smirnov VA, Grin’ AA, Chekhonin VP. Efficiency of transplantation of human placental/umbilical blood cells to rats with severe spinal cord injury. Bull. Exp. Biol. Med. 2014;157(1):85-88.CrossRefPubMedGoogle Scholar
  2. 2.
    Therapeutic Potential of Umbilical Cord Blood Cells in Non-Hematologic Diseases. Pal’tsev MA, Smirnov VN, eds. Moscow, 2012. Russian.Google Scholar
  3. 3.
    Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12(1):1-21.CrossRefPubMedGoogle Scholar
  4. 4.
    Blesch A, Tuszynski MH. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 2009;32(1):41-47.CrossRefPubMedGoogle Scholar
  5. 5.
    Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog. Brain. Res. 2002;137:257-273.CrossRefPubMedGoogle Scholar
  6. 6.
    Klapka N, Müller HW. Collagen matrix in spinal cord injury. J.of neurotrauma. 2006;23(3-4):422-435.CrossRefGoogle Scholar
  7. 7.
    Levy M, Boulis N, Rao M, Svendsen CN. Regenerative cellular therapies for neurologic diseases. Brain Res. 2015;1638(Pt A):88-96.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J. Cell. Mol. Med. 2012;16(11):2564-2582.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pérez-Garnes M, Barcia JA, Gómez-Pinedo U, Monleón Pradas M, Vallés-Lluch A. Materials for central nervous system tissue engineering. Cells and Biomaterials in Regenerative Medicine. Eberli D, ed. InTech, 2014. doi:  https://doi.org/10.5772/59339.
  10. 10.
    Wong FSY, Lo ACY. Collagen-based scaffolds for cell therapies in the injured brain. J. Stem Cell Res. Ther. 2015;5:267. doi:  https://doi.org/10.4172/2157-7633.1000267.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. I. Ryabov
    • 1
  • M. A. Zvyagintseva
    • 1
  • E. O. Osidak
    • 2
  • V. A. Smirnov
    • 1
  1. 1.National Medical Research Center for Cardiology of Ministry of Health of the Russian FederationMoscowRussia
  2. 2.IMTEK CompanyMoscowRussia

Personalised recommendations