Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 3, pp 376–381 | Cite as

Specific Features of Immediate Ultrastructural Changes in Brain Cortex Mitochondria of Rats with Different Tolerance to Hypoxia under Various Modes of Hypoxic Exposures

  • L. L. Pavlik
  • I. B. Mikheeva
  • Ya. M. Al’-Mugkhrabi
  • V. P. Berest
  • Yu. I. Kirova
  • E. L. Germanova
  • L. D. Luk’yanova
  • G. D. Mironova
MORPHOLOGY AND PATHOMORPHOLOGY
  • 19 Downloads

We performed ultrastructural study of cerebral cortex mitochondria in rats with different tolerance to oxygen deficiency (low resistant and highly resistant specimens). Low resistant rats were characterized by the prevalence of mitochondria with lightened matrix due to the nondense packing of cristae. By contrast, mitochondria of highly resistant animals had the dense packing of cristae. The structure of mitochondria underwent adaptive changes at 14-10% O2 in the inspired air. Under these conditions, structural characteristics of the cerebral cortex in hypoxia-sensitive rats resembled those in resistant animals. The decrease in O2 concentration to 8% was accompanied by ultrastructural signs of mitochondrial damage, which correlated with de-energization of the cell and dysfunction of adaptive signaling systems. Ultrastructural features of cerebral cortex mitochondria in animals with low and high tolerance to acute oxygen deficiency confirm the hypothesis that they are associated with two different “functionaland-metabolic portraits”.

Key Words

cerebral cortex hypoxia mitochondria ultrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dudchenko AM, Luk’yanova LD. Effects of adaptation to periodic hypoxia on kinetic parameters of respiratory chain enzymes in rat brain. Bull. Exp. Biol. Med. 1996;121(3):232-235.CrossRefGoogle Scholar
  2. 2.
    Zabolotskii NN, Onishchenko LS, Gakeev ISh. Mitochondrial megacone and pleiocone in the brain of rats as a possible adaptive response to lethal radiation and radiomodifying damage. Morfologiya. 1999;115(3):27-31. Russian.Google Scholar
  3. 3.
    Ivanchenko MV, Tverdokhleb IV. The impact of intrauterine hypoxia on mitochondrial heterogeneity which is controlled through alterations in rat ventricular myocardium. Vestn. Bolgograd. Gos. Med. Univer. 2014(4):101-106. Russian.Google Scholar
  4. 4.
    Luk’yanova LD. Bioenergetic hypoxia: Definition, mechanisms, and methods of correction. Bull. Exp. Biol. Med. 1997;124(3):835-843.CrossRefGoogle Scholar
  5. 5.
    Moshkov DA, Romanchenko SP, Parnyshkova EY, Bezgina EN, Zaichkina SI, Pavlik LL. Effect of dopamine on Ehrlich ascites carcinoma cells. Bull. Exp. Biol. Med. 2013;154(5):686-691.CrossRefPubMedGoogle Scholar
  6. 6.
    Rozova EV, Mankovskaya IN, Mironova GD. Structural and dynamic changes in mitochondria of rat myocardium under acute hypoxic hypoxia: Role of mitochondrial ATP-dependent potassium channel. Biochemistry (Moscow). 2015;80(8):994-1000.CrossRefGoogle Scholar
  7. 7.
    Luk’yanova LD, Romanova VE, Chernobaeva GN. Oxidative phosphorylation in brain mitochondria of rats differing in their sensitivity to hypoxia. Bull. Exp. Biol. Med. 1991;112(1):962-965.CrossRefGoogle Scholar
  8. 8.
    Sukhorukov VS. Essay on mitochondrial pathology. Moscow, 2011. Russian.Google Scholar
  9. 9.
    Chan DC. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 2006;22:79-99.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 2005;280(28):26 185-26 192.Google Scholar
  11. 11.
    Gomes LC, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta. 2013; 1833(1):205-212.CrossRefPubMedGoogle Scholar
  12. 12.
    Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 2009;89(3):799-845.CrossRefPubMedGoogle Scholar
  13. 13.
    Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front. Neurosci. 2015;9:320. doi:  https://doi.org/10.3389/fnins.2015.00320.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 2001;26(1):23-29.CrossRefPubMedGoogle Scholar
  15. 15.
    Wiesner RJ, Hornung TV, Garman JD, Clayton DA, O’Gorman E, Wallimann T. Stimulation of mitochondrial gene expression and proliferation of mitochondria following impairment of cellular energy transfer by inhibition of the phosphocreatine circuit in rat hearts. J. Bioenerg. Biomembr. 1999;31(6):559-567.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. L. Pavlik
    • 1
  • I. B. Mikheeva
    • 1
  • Ya. M. Al’-Mugkhrabi
    • 1
  • V. P. Berest
    • 1
  • Yu. I. Kirova
    • 2
  • E. L. Germanova
    • 2
  • L. D. Luk’yanova
    • 2
  • G. D. Mironova
    • 1
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.Research Institute of General Pathology and PathophysiologyMoscowRussia

Personalised recommendations