Bulletin of Experimental Biology and Medicine

, Volume 164, Issue 3, pp 324–329 | Cite as

Algorithm of Molecular and Biological Assessment of the Mechanisms of Sensitivity to Drug Toxicity by the Example of Cyclophosphamide

  • L. Yu. Telegin
  • S. Kh. Sarmanaev
  • V. M. Devichenskii
  • V. A. Tutelyan

Comparative study of the liver, blood, and spleen of DBA/2JSto and BALB/cJLacSto mice sensitive and resistant to acute toxicity of the cyclophosphamide allowed us to reveal basic toxicity biomarkers of this antitumor and immunosuppressive agent. Obtained results can be used for the development of an algorithm for evaluation of toxic effects of drugs and food components.

Key Words

cyclophosphamide acute toxicity biomarkers BALB/cJLacSto and DBA/2JSto mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Izotov MV, Shcherbakov VM, Devichenskii VM, Lugovaya LV, Benediktova SA, Saprin AN. Differences in the localization of active centers of cytochromes P-450 and P-448 in rat liver microsomes. Dokl. Akad. Nauk SSSR. 1986;287:1244-1248. Russian.PubMedGoogle Scholar
  2. 2.
    Telegin LYu. Pharmacogenetics of Cyclophosphamide. Moscow, 2017. Russian.Google Scholar
  3. 3.
    Telegin LYu, Zhirnov GF, Mazurov AV, Pevnitskii LA. Immunodepressive effect of cyclophosphamide activatedin vitro by liver microsomes from mice of different lines. Bull. Exp. Biol. Med. 1981;92(1):922-925.CrossRefGoogle Scholar
  4. 4.
    Telegin LY, Pisarev VM, Pevnitsky LA. Cyclophosphamide enhances the immunosuppressive action of its own active metabolites. Doklady Biol. Sci. 2008;423(1):437-439.CrossRefGoogle Scholar
  5. 5.
    Aitchison KJ, Munro J, Wright P, Smith S, Makoff AJ, Sachse C, Sham PC, Murray RM, Collier DA, Kerwin RW. Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br. J. Clin. Pharmacol. 1999;48(3):388-394.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Alarcon RA. Fluorometric determination of acrolein and related compounds with m-aminophenol. Anal. Chem. 1968;40(11):1704-1708.CrossRefPubMedGoogle Scholar
  7. 7.
    Andersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother. Pharmacol. 1996;38(5):406-416.CrossRefPubMedGoogle Scholar
  8. 8.
    Chan KK, Hong PS, Tutsch K, Trump DL. Clinical pharmacokinetics of cyclophosphamide and metabolites with and without SR-2508. Cancer Res. 1994;54(24):6421-6429.PubMedGoogle Scholar
  9. 9.
    Hipkens JH, Struck RF, Gurtoo HL. Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide. Cancer Res. 1981;41(9, Pt 1):3571-3583.PubMedGoogle Scholar
  10. 10.
    Izotov MV, Shcherbakov VM, Devichensky VM, Spiridonova SM, Lugovaja LV, Benediktova SA. The ratio of two isozyme groups in microsomal cytochrome P-450 under exogenous influence of carbon tetrachloride and cyclophosphamide. Biothechnol. Appl. Biochem. 1988;10(6):545-550.Google Scholar
  11. 11.
    Kato S, Ishii H, Kano S, Hagihara S, Todoroki T, Nagata S, Takahashi H, Shigeta Y, Tsuchiya M. Alcohol dehydrogenase: a new sensitive marker of hepatic centrilobular damage. Alcohol. 1985;2(1):35-38.CrossRefPubMedGoogle Scholar
  12. 12.
    Nebert DW, Jorge-Nebert L, Vesell ES. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am. J. Pharmacogenomics. 2003;3(6):361-370.CrossRefPubMedGoogle Scholar
  13. 13.
    Nordenskjöld M, Moldéus P, Lambert B. Effects of ultraviolet light and cyclophosphamide on replication and repair synthesis of DNA in isolated rat liver cells and human leukocytes coincubated with microsomes. Hereditas. 1978;89(1):1-6.CrossRefPubMedGoogle Scholar
  14. 14.
    Pevnitsky LA, Telegin LY, Zhirnov GF, Mazurov AV, Viktorov VV. Sensitivity of immunodepressant action of cyclophosphamide: analysis of interstrain differences in mice. Int. J. Immunopharmacol. 1985;7(6):875-880.CrossRefPubMedGoogle Scholar
  15. 15.
    Pinto N, Ludeman SM, Dolan ME. Drug focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics. 2009;10(12):1897-1903.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schlenke P, Kisro J, Deeken M, Zajac S, Klich S, Wagner T. The cytotoxicity of mafosfamide on G-CSF mobilized hematopoietic progenitors is reduced by SH groups of albumin — implications for further purging strategies. Bone Marrow Transplant. 1999;23(2):157-161.CrossRefPubMedGoogle Scholar
  17. 17.
    Takizawa D, Kakizaki S, Horiguchi N, Tojima H, Yamazaki Y, Ichikawa T, Sato K, Mori M. Histone deacetylase inhibitors induce cytochrome P450 2B by activating nuclear receptor constitutive androstane receptor. Drug Metab. Dispos. 2010;38(9):1493-1498.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang J, Tian Q, Zhu YZ, Xu AL, Zhou SF. Reversal of resistance to oxazaphosphorines. Curr. Cancer Drug Targets. 2006;6(5):385-407.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Yu. Telegin
    • 1
  • S. Kh. Sarmanaev
    • 2
  • V. M. Devichenskii
    • 2
  • V. A. Tutelyan
    • 3
  1. 1.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Advanced Studies, Federal Medical-Biological AgencyMoscowRussia
  3. 3.Federal Research Centre of Nutrition, Biotechnology and Food SafetyMoscowRussia

Personalised recommendations