Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 578–582 | Cite as

Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells

  • Yu. A. Romanov
  • E. E. Balashova
  • N. E. Volgina
  • N. V. Kabaeva
  • T. N. Dugina
  • G. T. Sukhikh
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • 79 Downloads

We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell—cell contacts with leukocytes and only for bone marrow derived cells.

Key Words

mesenchymal stromal cells umbilical cord blood co-culture differentiation clusters flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreeva ER, Andrianova IV, Sotnezova EV, Buravkov SV, Bobyleva PI, Romanov YA, Buravkova LB. Human adipose-tissue derived stromal cells in combination with hypoxia effectively support ex vivo expansion of cord blood haematopoietic progenitors. PLoS One. 2015;10(4):e0124939.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy. 2013;15(3):330-343.CrossRefPubMedGoogle Scholar
  3. 3.
    de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, Kebriaei P, Parmar S, Popat U, Hosing C, Champlin R, Bollard C, Molldrem JJ, Jones RB, Nieto Y, Andersson BS, Shah N, Oran B, Cooper LJ, Worth L, Qazilbash MH, Korbling M, Rondon G, Ciurea S, Bosque D, Maewal I, Simmons PJ, Shpall EJ. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 2012;367(24):2305-2315.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fan L, Hu C, Chen J, Cen P, Wang J, Li L. Interaction between mesenchymal stem cells and B-cells. Int. J. Mol. Sci. 2016;17(5. pii: E650. doi:  10.3390/ijms17050650.
  5. 5.
    Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R. Hematopoietic stem cells in co-culture with mesenchymal stromal cells — modeling the niche compartments in vitro. Haematologica. 2010;95(4):542-550.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Klein C, Strobel J, Zingsem J, Richter R.H, Goecke TW, Beckmann MW, Eckstein R, Weisbach V. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton’s jelly, amniotic fluid, cord blood, and bone marrow. Tissue Eng. Part A. 2013;19(23-24):2577-2585.CrossRefPubMedGoogle Scholar
  7. 7.
    Li D, Wang C, Chi C, Wang Y, Zhao J, Fang J, Pan J. Bone marrow mesenchymal stem cells Inhibit lipopolysaccharide-induced inflammatory reactions in macrophages and endothelial cells. Mediators Inflamm. 2016; 2016. doi:10.1155/2016/2631439.Google Scholar
  8. 8.
    Liu Q, Zheng H, Chen X, Peng Y, Huang W, Li X, Li G, Xia W, Sun Q, Xiang A.P. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(-) regulatory T cells. Cell. Mol. Immunol. 2014;12(6):708-718.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maslova EV, Andreeva ER, Andrianova IV, Bobyleva PI, Romanov YA, Kabaeva NV, Balashova EE, Ryaskina SS, Dugina TN, Buravkova LB. Enrichment of umbilical cord blood mononuclears with hemopoietic precursors in co-culture with mesenchymal stromal cells from human adipose tissue. Bull. Exp. Biol. Med. 2014;156(4):584-589.CrossRefPubMedGoogle Scholar
  10. 10.
    Mehrasa R, Vaziri H, Oodi A, Khorshidfar M, Nikogoftar M, Golpour M, Amirizadeh N. Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. Int. J. Mol. Cell. Med. 2014;3(1):1-10.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Munir H, Luu NT, Clarke LS, Nash GB, McGettrick HM. Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium. PLoS One. 2016;11(5):e0155161. doi: 10.1371/journal.pone.0155161.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Robinson SN, Simmons PJ, Yang H, Alousi AM, Marcos de Lima J, Shpall EJ. Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract. Res. Clin. Haematol. 2011;24(1):83-92.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Romanov YA, Balashova EE, Bystrykh OA, Titkov KV, Dugina TN, Kabaeva NV, Fedorova TA, Rogachevskii OV, Degtyarev DN, Sukhikh GT. Umbilical cord blood for autologous transfusion in the early postnatal ontogeny: analysis of cell composition and viability during long-term culturing. Bull. Exp. Biol. Med. 2015;158(4):523-527.CrossRefPubMedGoogle Scholar
  14. 14.
    Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Changes in cell composition of umbilical cord blood and functional activity of hematopoietic stem cells during cryogenic storage and repeated freezing/thawing cycles. Bull. Exp. Biol. Med. 2016;160(4):571-574.CrossRefPubMedGoogle Scholar
  15. 15.
    Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Optimized protocol for isolation of multipotent mesenchymal stromal cells from human umbilical cord. Bull. Exp. Biol. Med. 2015;160(1):148-154.CrossRefPubMedGoogle Scholar
  16. 16.
    Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Isolation of multipotent mesenchymal stromal cells from cryopreserved human umbilical cord tissue. Bull. Exp. Biol. Med. 2016;160(4):530-534.CrossRefPubMedGoogle Scholar
  17. 17.
    Saeidi M, Masoud A, Shakiba Y, Hadjati J, Mohyeddin Bonab M, Nicknam MH, Latifpour M, Nikbin B. Immunomodulatory effects of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells. Iran J. Allergy Asthma Immunol. 2013;12(1):37-49.PubMedGoogle Scholar
  18. 18.
    Saleh M, Shamsasanjan K, Movassaghpourakbari A, Akbarzadehlaleh P, Molaeipour Z. The impact of mesenchymal stem cells on differentiation of hematopoietic stem cells. Adv. Pharm. Bull. 2015;5(3):299-304.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sotnezova (Maslova) EV, Gornostaeva AN, Andreeva ER, Buravkova LB, Romanov YA, Balashova EE. The effect of stromal cells and oxygen concentration on maintenance of cord blood hematopoietic precursors. Cell Tissue Biol. 2015;9(5):341-347.Google Scholar
  20. 20.
    Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016;7:125.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11-22.CrossRefPubMedGoogle Scholar
  22. 22.
    Valencic E, Loganes C, Cesana S, Piscianz E, Gaipa G, Biagi E, Tommasini A. Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media. Stem Cell Res. Ther. 2014;5(1):3. doi: 10.1186/scrt392.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell. Mol. Med. 2010;14(1-2):337-350.CrossRefPubMedGoogle Scholar
  24. 24.
    Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy. 2015;17(1):18-24.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y, Shi YF. TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+neutrophils. Oncogene. 2016. Jul 4. doi:  10.1038/onc.2016.217.
  26. 26.
    Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, Guan F. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell. Immunol. 2011;272(1):33-38.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. A. Romanov
    • 1
    • 3
  • E. E. Balashova
    • 3
  • N. E. Volgina
    • 2
  • N. V. Kabaeva
    • 1
  • T. N. Dugina
    • 3
  • G. T. Sukhikh
    • 2
  1. 1.Russian Cardiology Research-and-Production ComplexMinistry of Health of the Russian FederationMoscowRussia
  2. 2.V. I. Kulakov Research Center of Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.CryoCenter Cord Blood BankMoscowRussia

Personalised recommendations