Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 569–577 | Cite as

Heterogeneity of Retinal Pigment Epithelial Cells from Adult Human Eye in Different Culturing Systems

  • A. V. Kuznetsova
  • M. A. Aleksandrova
Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)

We studied the behavior of retinal pigment epithelial cells from adult human eye derived from different donors in different culturing systems: on plastic, in collagen gel, and on decellularized neural retina substrate. The cells diverge into two subpopulations similar by their morphology and behavior: one subpopulation migrated to the surface of the dense substrate and the other formed spheroid structures consisting of aggregated cells. This fact confirms the data on genetically-predetermined phenotypic heterogeneity of retinal pigment epithelium cells that should be taken into account when using these cells in tissue engineering.

Key Words

retinal pigment epithelium from adult human eye cell culture 3D matrix collagen gel devitalization of the retina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuznetsova AV, Milyushina LA, Mikaelyan AS, Zinov’eva RD, Grigoryan EN, Aleksandrova MA. Dedifferentiation of retinal pigment epithelial cells from adult human eye in vitro. Mol. Med. 2010;(6):23-29.Google Scholar
  2. 2.
    Alge CS, Suppmann S, Priglinger SG, Neubauer AS, May CA, Hauck S, Welge-Lussen U, Ueffing M, Kampik A. Comparative proteome analysis of native differentiated and cultured dedifferentiated human RPE cells. Invest. Ophthalmol. Vis. Sci. 2003;44(8):3629-3641.CrossRefPubMedGoogle Scholar
  3. 3.
    Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1-13.CrossRefPubMedGoogle Scholar
  4. 4.
    Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy. Br. J. Ophthalmol. 2011;95(4):441-442. doi: 10.1136/bjo.2009.171926.CrossRefPubMedGoogle Scholar
  5. 5.
    Burke JM, Hjelmeland LM. Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol. Interv. 2005; 5(4):241-249.CrossRefPubMedGoogle Scholar
  6. 6.
    Cong L, Sun D, Zhang Z, Jiao W, Rizzolo LJ, Peng S. A novel rabbit model for studying RPE transplantation. Invest. Ophthalmol. Vis. Sci. 2008;49(9):4115-4125.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog. Retin. Eye Res. 2007;26(6):598-635.CrossRefPubMedGoogle Scholar
  8. 8.
    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 2001;33(7):637-668.CrossRefPubMedGoogle Scholar
  9. 9.
    Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK. Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J. 2002;21(11):2547-2556.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dunmire JJ, Bouhenni R, Hart ML, Wakim BT, Chomyk A.M, Scott S.E, Nakamura H, Edward D.P. Novel serum proteomic signatures in a non-human primate model of retinal injury. Mol. Vis. 2011;17:779-791.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Fuchs U, Kivelä T, Tarkkanen A. Cytoskeleton in normal and reactive human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 1991;32(13):3178-3186.PubMedGoogle Scholar
  12. 12.
    Grisanti S, Guidry C. Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest. Ophthalmol. Vis. Sci. 1995;36(2):391-405.PubMedGoogle Scholar
  13. 13.
    Hernández M, Pearce-Kelling S.E, Rodriguez F.D, Aguirre G.D, Vecino E. Altered expression of retinal molecular markers in the canine RPE65 model of Leber congenital amaurosis. Invest. Ophthalmol. Vis Sci. 2010;51(12):6793-6802.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kuznetsova AV. Morphological and physiological characteristics of the native retinal pigment epithelium in vertebrate animals and human. Biol. Bull. Rev. 2014;4(2):71-85.CrossRefGoogle Scholar
  15. 15.
    Kuznetsova AV, Grigoryan EN, Aleksandrova MA. Human adult retinal pigment epithelial cells as potential cell source for retina recovery. Cell Tssue Biol. 2011;5(5):495-502.CrossRefGoogle Scholar
  16. 16.
    Milyushina LA, Kuznetsova AV, Grigoryan EN, Aleksandrova MA. Phenotypic plasticity of retinal pigment epithelial cells from adult human eye in vitro. Bull. Exp. Biol. Med. 2011;151(4):506-511.CrossRefPubMedGoogle Scholar
  17. 17.
    Milyushina LA, Verdiev BI, Kuznetsova AV, Aleksandrova MA. Expression of multipotent and retinal markers in pigment epithelium of adult human in vitro. Bull. Exp. Biol. Med. 2012;153(1):157-162.CrossRefPubMedGoogle Scholar
  18. 18.
    Qin S, Rodrigues GA. Progress and perspectives on the role of RPE cell inflammatory responses in thedevelopment of age-related macular degeneration. J. Inflamm. Res. 2008;1:49-65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sheridan C, Hiscott P, Grierson I. Retinal pigment epithelium differentiation and dedifferentiation. Vitreo-retinal Surgery. Kirchhof B, Wong D. New York, 2005. P. 101-119.Google Scholar
  20. 20.
    Stanzel BV, Espana EM, Grueterich M, Kawakita T, Parel JM, Tseng SC, Binder S. Amniotic membrane maintains the phenotype of rabbit retinal pigment epithelial cellsin culture. Exp. Eye Res. 2005;80(1):103-112.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsonis PA, Jang W, Del Rio-Tsonis K, Eguchi G. A unique aged human retinal pigmented epithelial cell line useful for studying lens differentiation in vitro. Int. J. Dev. Biol. 2001;45(5-6):753-758.PubMedGoogle Scholar
  22. 22.
    van Meurs JC, Van Den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am. J. Ophthalmol. 2003;136(4):688-695.CrossRefPubMedGoogle Scholar
  23. 23.
    Voroteliak EA, Shikhverdieva ASh, Vasil’ev AV, Terskikh VV. Simulation of the migration process of human epidermal keratinocytes over three-dimensional collagen gel. Izv. Akad. Nauk. Ser. Biol. 2002;(1):30-37.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.N. K. Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations