Skip to main content

Advertisement

Log in

Effect of THP-1 Cells on the Formation of Vascular Tubes by Endothelial EA.hy926 Cells in the Presence of Placenta Secretory Products

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of THP-1 cells on the formation of vessel-like structures by endothelial cells in the presence of placenta-conditioned media. Addition of THP-1 cells to endothelial cells cultured in the presence of media conditioned by first-trimester placentas led to an increase in the length of cell tubes and reduced their number in comparison with endothelial cell monoculture. In the presence of media conditioned by third-trimester placentas, THP-1 cells did not affect the length and number of cell tubes formed by endothelial cells. When evaluating the formation of vessel-like structures by endothelial cells in co-culture, marked decrease in the length of cell tubes in the presence of media conditioned by first-trimester placentas vs. third-trimester placentas was noted. No differences in the length and number of cell tubes formed by endothelial cells co-cultured with THP-1 cells in the presence of placental factors from women with preeclampsia and uncomplicated pregnancy were found. These findings can reflect the peculiarities of the influence of macrophages on the formation of blood vessels by endothelial cells in the placenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sokolov DI, Sel’kov SA. Immunological Control of the Formation of the Placental Vascular Network. St. Petersburg, 2012. Russian.

  2. Apte RS. Regulation of angiogenesis by macrophages. Adv. Exp. Med. Biol. 2010;664:15-199.

    Article  CAS  PubMed  Google Scholar 

  3. Bdolah Y, Sukhatme VP, Karumanchi SA. Angiogenic imbalance in the pathophysiology of preeclampsia: newer insights. Semin. Nephrol. 2004;24(6):548-556.

    Article  PubMed  Google Scholar 

  4. Benirschke K, Kaufmanna P. Pathology of the Human Placenta, 4th ed. New York, 2000.

  5. Borzychowski AM, Sargent IL, Redman CW. Inflammation and pre-eclampsia. Semin. Fetal Neonatal. Med. 2006;11(5):309-316.

    Article  CAS  PubMed  Google Scholar 

  6. Charnock-Jones DS. Soluble flt-1 and the angiopoietins in the development and regulation of placental vasculature. J. Anat. 2002;200(6):607-615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25(2-3):103-113.

    CAS  PubMed  Google Scholar 

  8. Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 2000;87(6):434-439.

    Article  CAS  PubMed  Google Scholar 

  9. Furuya M, Kurasawa K, Nagahama K, Kawachi K, Nozawa A, Takahashi T, Aoki I. Disrupted balance of angiogenic and antiangiogenic signalings in preeclampsia. J. Pregnancy. 2011;2011. ID 123717. doi: 10.1155/2011/123717.

  10. Geva E, Ginzinger DG, Zaloudek CJ, Moore DH, Byrne A, Jaffe RB. Human placental vascular development: vasculogenic and angiogenic (branching and nonbranching) transformation is regulated by vascular endothelial growth factor-A, angiopoietin-1, and angiopoietin-2. J. Clin. Endocrinol. Metab. 2002;87(9):4213-4224.

    Article  CAS  PubMed  Google Scholar 

  11. Jacob SS, Shastry P, Sudhakaran PR. Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum. Mol. Cell. Biochem. 2002;233(1-2):9-17.

    Article  CAS  PubMed  Google Scholar 

  12. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-118.

    Article  CAS  PubMed  Google Scholar 

  13. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25(2-3):114-126.

    Article  CAS  PubMed  Google Scholar 

  14. Kronborg CS, Knudsen UB, Moestrup SK, Allen J, Vittinghus E, Møller HJ. Serum markers of macrophage activation in pre-eclampsia: no predictive value of soluble CD163 and neopterin. Acta Obstet. Gynecol. Scand. 2007;86(9):1041-1046.

    Article  CAS  PubMed  Google Scholar 

  15. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46(5):1077-1085.

    Article  CAS  PubMed  Google Scholar 

  16. Lukacs NW, Strieter RM, Elner V, Evanoff HL, Burdick MD, Kunkel SL. Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte: endothelial cell interactions. Blood. 1995;86(7):2767-2773.

    CAS  PubMed  Google Scholar 

  17. Lvova TY, Stepanova OI, Furaeva KN, Korenkov DA, Sokolov DI, Selkov SA. Effects of placental tissue secretory products on the formation of vascular tubules by EA.hy926 endothelial cells. Bull. Exp. Biol. Med. 2013;155(1):108-112.

    Article  PubMed  Google Scholar 

  18. Lvova TY, Stepanova OI, Viazmina LP, Okorokova LS, Belyakova KL, Belikova ME, Selkov SA, Sokolov DI. Effect of factors secreted by the placenta on phenotype of THP-1 cells cultured on a 3D scaffold. Bull. Exp. Biol. Med. 2016;161(1):162-167.

    Article  CAS  PubMed  Google Scholar 

  19. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677-686.

    Article  CAS  PubMed  Google Scholar 

  20. Moldovan L, Moldovan NI. Role of monocytes and macrophages in angiogenesis. EXS. 2005;(94):127-146.

    Google Scholar 

  21. Mor G, Abrahams VM. Potential role of macrophages as immunoregulators of pregnancy. Reprod. Biol. Endocrinol. 2003;1:119.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod. Sci. 2010;17(3):209-218.

    Article  CAS  PubMed  Google Scholar 

  23. Onokhina YS, L’vova TY, Tsitskarava DZ, Koren’kov DA, Sel’kov SA, Sokolov DI. Effect of factors produced by the placenta on cytokine secretion by THP-1 cells cultured on a 3D scaffold. Bull. Exp. Biol. Med. 2014;156(4):566-570.

    Article  PubMed  Google Scholar 

  24. Padavala S, Pope N, Baker P, Crocker I. An imbalance between vascular endothelial growth factor and its soluble receptor in placental villous explants of intrauterine growth-restricted pregnancies. J. Soc. Gynecol. Investig. 2006;13(1):40-47.

    Article  CAS  PubMed  Google Scholar 

  25. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol. 2002;282(5):C947-C970.

    Article  CAS  PubMed  Google Scholar 

  26. Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 1992;189(2):824-831.

    Article  CAS  PubMed  Google Scholar 

  27. Rein DT, Breidenbach M, Hönscheid B, Friebe-Hoffmann U, Engel H, Göhring UJ, Uekermann L, Kurbacher CM, Schöndorf T. Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine. 2003;23(4-5):119-125.

    Article  CAS  PubMed  Google Scholar 

  28. Resta L, Capobianco C, Marzullo A, Piscitelli D, Sanguedolce F, Schena FP, Gesualdo L. Confocal laser scanning microscope study of terminal villi vessels in normal term and pre-eclamptic placentas. Placenta. 2006;27(6-7):735-739.

    Article  CAS  PubMed  Google Scholar 

  29. Ribatti D, Nico B, Crivellato E, Vacca A. Macrophages and tumor angiogenesis. Leukemia. 2007;21(10):2085-2089.

    Article  CAS  PubMed  Google Scholar 

  30. Schildberger A, Rossmanith E, Eichhorn T, Strassl K, Weber V. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators Inflamm. 2013;2013. ID 697972. doi: 10.1155/2013/697972.

  31. Schmidt T, Carmeliet P. Blood-vessel formation: Bridges that guide and unite. Nature. 2010;465:697-699.

    Article  CAS  PubMed  Google Scholar 

  32. Schonkeren D, van der Hoorn ML, Khedoe P, Swings G, van Beelen E, Claas F, van Kooten C, de Heer E, Scherjon S. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. Am. J. Pathol. 2011;178(2):709-717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schubert SY, Benarroch A, Monter-Solans J, Edelman ER. Primary monocytes regulate endothelial cell survival through secretion of angiopoietin-1 and activation of endothelial Tie2. Arterioscler. Thromb. Vasc. Biol. 2011;31(4):870-875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seval Y, Korgun ET, Demir R. Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta. 2007;28(8-9):841-845.

    Article  CAS  PubMed  Google Scholar 

  35. Starickova EA, Sokolov DI, Selkov SA, Freidlin IS. Changes in the profiles of chemokines secreted by endothelial cells and monocytes under different co-culturing conditions. Bull. Exp. Biol. Med. 2011;150(4):446-449.

    Article  CAS  PubMed  Google Scholar 

  36. Stepanova OI, Safronova NU, Furaeva KN, Lvova TU, Sokolov DI, Selkov SA. Effects of placental secretory factors on cytokine production by endothelial cells. Bull. Exp. Biol. Med. 2013;154(3):375-378.

    Article  CAS  PubMed  Google Scholar 

  37. Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J. Leukoc. Biol. 1994;55(3):410-422.

    PubMed  Google Scholar 

  38. Wang Y, Walsh SW. TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J. Reprod. Immunol. 1996;32(2):157-169.

    Article  CAS  PubMed  Google Scholar 

  39. Weisser SB, McLarren KW, Kuroda E, Sly LM. Generation and characterization of murine alternatively activated macrophages. Methods Mol. Biol. 2013;946:225-239.

    Article  CAS  PubMed  Google Scholar 

  40. Wesley RB 2nd, Meng X, Godin D, Galis ZS. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler. Thromb. Vasc. Biol. 1998;18(3):432-440.

    Article  CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Osanai T, Nishizaki F, Sukekawa T, Izumiyama K, Sagara S, Okumura K. Matrix metalloprotein-9 activation under cell-to-cell interaction between endothelial cells and monocytes: possible role of hypoxia and tumor necrosis factora. Heart Vessels. 2012;27(6):624-633.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Sokolov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 233-240, October, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lvova, T.Y., Belyakova, K.L., Sel’kov, S.A. et al. Effect of THP-1 Cells on the Formation of Vascular Tubes by Endothelial EA.hy926 Cells in the Presence of Placenta Secretory Products. Bull Exp Biol Med 162, 545–551 (2017). https://doi.org/10.1007/s10517-017-3657-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3657-6

Key Words

Navigation