Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 528–533 | Cite as

Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells

  • Yu. A. Romanov
  • E. E. Balashova
  • N. E. Volgina
  • N. V. Kabaeva
  • T. N. Dugina
  • G. T. Sukhikh
CELL TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • 56 Downloads

Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

Key Words

multipotent mesenchymal stromal cells umbilical cord blood serum proliferation phenotype differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015. ID 628767. doi:  10.1155/2015/628767.
  2. 2.
    Castrén E, Sillat T, Oja S, Noro A, Laitinen A, Konttinen YT, Lehenkari P, Hukkanen M, Korhonen M. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum. Stem Cell Res. Ther. 2015;6:167. doi:  10.1186/s13287-015-0162-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton’s jelly-derived mesenchymal stem cells. Stem Cell Res. Ther. 2013;4(4):81. doi:  10.1186/scrt232.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Díez JM, Bauman E, Gajardo R, Jorquera JI. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res. Ther. 2015;6:28: doi:  10.1186/s13287-015-0016-2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, Melkoumian Z. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One. 2014;9(3):e92120.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, Behie LA. Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol. Appl. Biochem. 2012;59(2):106-120.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J. Intern. Med. 2013;28(4):387-402.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Konala V.B, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. 2016;18(1):13-24.CrossRefPubMedGoogle Scholar
  9. 9.
    Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, Zhao GB, Ma ZJ. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther. 2015;6:55. doi:  10.1186/s13287-015-0066-5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu Y, Li YQ, Wang HY, Li YJ, Liu GY, Xu X, Wu XB, Jing YG, Yao Y, Wu CT, Jin JD. Effect of serum choice on replicative senescence in mesenchymal stromal cells. Cytotherapy. 2015;17(7):874-884.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216-225.CrossRefPubMedGoogle Scholar
  12. 12.
    Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013;45:e54. doi:  10.1038/emm.2013.94.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Oikonomopoulos A, van Deen WK, Manansala AR, Lacey PN, Tomakili TA, Ziman A, Hommes DW. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci. Rep. 2015;5. ID 16570. doi:  10.1038/srep16570.
  14. 14.
    Riordan NH, Madrigal M, Reneau J, de Cupeiro K, Jiménez N, Ruiz S, Sanchez N, Ichim TE, Silva F, Patel AN. Scalable efficient expansion of mesenchymal stem cells in xeno free media using commercially available reagents. J. Transl Med. 2015;13:232.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Optimized protocol for isolation of multipotent mesenchymal stromal cells from human umbilical cord. Bull. Exp. Biol. Med. 2015;160(1):148-154.CrossRefPubMedGoogle Scholar
  16. 16.
    Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med. 2005;140(1):138-143.CrossRefPubMedGoogle Scholar
  17. 17.
    Stoltz JF, de Isla N, Li YP, Bensoussan D, Zhang L, Huselstein C, Chen Y, Decot V, Magdalou J, Li N, Reppel L, He Y. Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int. 2015;2015. ID 734731. doi:  10.1155/2015/734731.
  18. 18.
    Suchánková Kleplová T, Soukup T, Řeháček V, Suchánek J. Human plasma and human platelet-rich plasma as a substitute for fetal calf serum during long-term cultivation of mesenchymal dental pulp stem cells. Acta Medica (Hradec Kralove). 2014;57(3):119-126.CrossRefGoogle Scholar
  19. 19.
    Swamynathan P, Venugopal P, Kannan S, Thej C, Kolkundar U, Bhagwat S, Ta M, Majumdar AS, Balasubramanian S. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res. Ther. 2014;5(4):88. doi:  10.1186/scrt477.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Venugopal P, Balasubramanian S, Majumdar AS, Ta M. Isolation, characterization, and gene expression analysis of Wharton’s jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning. 2011;4:39-50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. A. Romanov
    • 1
    • 3
  • E. E. Balashova
    • 1
    • 3
  • N. E. Volgina
    • 2
  • N. V. Kabaeva
    • 1
  • T. N. Dugina
    • 3
  • G. T. Sukhikh
    • 2
  1. 1.Russian Cardiology Research-and-Production ComplexMinistry of Health of the Russian FederationMoscowRussia
  2. 2.V. I. Kulakov Research Center of Obstetrics, Gynecology, and PerinatologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.CryoCenter Cord Blood BankMoscowRussia

Personalised recommendations