Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 488–495 | Cite as

Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics

  • A. V. Rodina
  • T. Kh. Tenchurin
  • V. P. Saprykin
  • A. D. Shepelev
  • V. G. Mamagulashvili
  • T. E. Grigor’ev
  • E. Yu. Moskaleva
  • S. N. Chvalun
  • S. E. Severin
BIOTECHNOLOGIES

Biocompatibility of film and fibrous scaffolds from polylactide-based polymers and the relationship between their architecture and the functional characteristics of mesenchymal stem cells were studied. Cell culturing on polylactide-based film and fibrous matrixes did not deteriorate cell morphology and their proliferation and differentiation capacities. The rate of cell proliferation and penetration in microporous 3D matrices with the same porosity parameters and pore size depended on their spatial organization. The above materials can be used as scaffolds for mesenchymal stem cells for creation of tissue engineering implants. The scaffold size and structure should be determined by the defects in the organs in which the regeneration processes have to be stimulated.

Key Words

mesenchymal stem cells polylactide scaffolds differentiation regenerative medicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogdanova OI, Sedush NG, Ovchinnikova TN, Belousov SI, Polyakov DK, Chvalun SN. Polylactide, a biodegradable, biocompatible polymer based on plant raw materials. Ekol. Prom. Rossii. 2010;(Spets. Vypusk 5):18-23. Russian.Google Scholar
  2. 2.
    Sarkisov DS, Perov YuM. Microscopic Technique. Moscow, 1996;16-20. Russian.Google Scholar
  3. 3.
    Shved YuA, Kukhareva LV, Zorin IM, Solovjov AYu, Blinova MI, Bilibin AYu, Pinaev GP. Elaboration of biodegradable polymer substrate for cultivation of human dermal fibroblasts. Tsitologiya. 2006;48(2):161-168. Russian.Google Scholar
  4. 4.
    Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002;8(2):175-188.CrossRefPubMedGoogle Scholar
  5. 5.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.CrossRefPubMedGoogle Scholar
  6. 6.
    Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, Andreeff M, Lang FF. Isolation and peri-vascular localization of mesenchymal stem cells from mouse brain. Neurosurgery. 2010;67(3):711-720.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee M, Wu BM, Dunn JC. Effect of scaffold architecture and pore size on smooth muscle cell growth. J. Biomed. Mater. Res A. 2008;87(4):1010-1016.CrossRefPubMedGoogle Scholar
  8. 8.
    Milner KR, Siedlecki CA. Fibroblast response is enhanced by poly(L-lactic acid) nanotopography edge density and proximity. Int. J. Nanomedicine. 2007;2(2):201-211.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Paakinaho K, Heino H, Pelto M, Hannula M, Törmälä P, Kellomäki M. Programmed water-induced shape-memory of bioabsorbable poly(D,L-lactide): activation and properties in physiological temperature. J. Mater. Sci. Mater. Med. 2012;23(3):613-621.CrossRefPubMedGoogle Scholar
  10. 10.
    Rasal RM, Janorkar AV, Hirt DE. Poly (lactie acid) modifications. Prog. Polym. Sci. 2010;35(3):338-356.CrossRefGoogle Scholar
  11. 11.
    Schusser S, Menzel S, Bäcker M, Leinhos M, Poghossian A, Wagner P, Schöning MJ. Degradation of thin poly(lactic acid) films: Characterization by capacitance—voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements. Electrochim. Acta. 2013;113):779-778.Google Scholar
  12. 12.
    Truslow JG, Price GM, Tien J. Computational design of drainage systems for vascularized scaffolds. Biomaterials. 2009;30(26):4435-4443.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7(5):557-572.CrossRefPubMedGoogle Scholar
  14. 14.
    Zippel N, Schulze M, Tobiasch E. Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat. Biotechnol. 2010;4(1):1-22.CrossRefPubMedGoogle Scholar
  15. 15.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211-228.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. V. Rodina
    • 1
  • T. Kh. Tenchurin
    • 1
  • V. P. Saprykin
    • 2
  • A. D. Shepelev
    • 1
  • V. G. Mamagulashvili
    • 1
  • T. E. Grigor’ev
    • 1
  • E. Yu. Moskaleva
    • 1
  • S. N. Chvalun
    • 1
  • S. E. Severin
    • 1
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.A. I. Burnazyan Federal Medical and Biophysical CenterFederal Medical-Biological AgencyMoscowRussia

Personalised recommendations