Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 454–457 | Cite as

Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice

  • T. A. Gudasheva
  • P. Yu. Povarnina
  • S. B. Seredenin

Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

Key Words

dipeptide mimetics brain-derived neurotrophic factor GCB-106 stress neurogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gudasheva TA, Tarasyuk AV, Pomogaibo SV, Logvinov IO, Povarnina PYu, Antipova TA, Seredenin SB. Design and synthesis of dipeptide mimetics of the brain-derived neurotrophic factor. Russ. J. Bioorgan. Chem. 2012;38(3):243-252.Google Scholar
  2. 2.
    Gudasheva TA, Logvinov IO, Antipova TA, Seredenin SB. Brain-derived neurotrophic factor loop 4 dipeptide mimetic GSB-106 activates TrkB, Erk, and Akt and promotes neuronal survival in vitro. Doklady Biochem. Biophysics. 2013;451(1): 212-214.CrossRefGoogle Scholar
  3. 3.
    Seredenin SB, Voronina TA, Gudasheva TA, Garibova TL, Molodavkin GM, Litvinova SA, Elizarova EA, Poseva VI. Antidepressant effect of dimeric dipeptide GSB-106, an original low-molecular-weight Mimetic of BDNF. Acta Naturae. 2013;5(4):105-109.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Björkholm C, Monteggia LM. BDNF — a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72-79.CrossRefPubMedGoogle Scholar
  5. 5.
    Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology. 2013;38(6):1068-1077.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cobb JA, Simpson J, Mahajan GJ, Overholser JC, Jurjus GJ, Dieter L, Herbst N, May W, Rajkowska G, Stockmeier CA. Hippocampal volume and total cell numbers in major depressive disorder. J. Psychiatr. Res. 2013;47(3):299-306.CrossRefPubMedGoogle Scholar
  7. 7.
    Den Boer JA. Looking beyond the monoamine hypothesis. Eur. Neurol. Rev. 2006;6(1):87-92.Google Scholar
  8. 8.
    Jiang C, Salton R. The role of neurotrophins in major depressive disorder. Transl. Neurosci. 2013;4(1):46-58.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods. 2002;115(1):97-105.CrossRefPubMedGoogle Scholar
  10. 10.
    Kempermann G. Adult neurogenesis: stem cells and neuronal development in the adult brain. Oxford, 2006.Google Scholar
  11. 11.
    Magni LR, Purgato M, Gastaldon C, Papola D, Furukawa TA, Cipriani A, Barbui C. Fluoxetine versus other types of pharmacotherapy for depression. Cochrane Database Syst. 2013. Rev. 7. CD004185.Google Scholar
  12. 12.
    Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative metaanalysis. J. Affect. Disord. 2015;15(174):432-440.CrossRefGoogle Scholar
  13. 13.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458-461.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wainwright SR, Galea LA. The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSANCAM within the hippocampus. Neural Plast. 2013;2013. ID 805497.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. A. Gudasheva
    • 1
  • P. Yu. Povarnina
    • 1
  • S. B. Seredenin
    • 2
  1. 1.Laboratory of Peptide BioregulatorsV. V. Zakusov Research Institute of PharmacologyMoscowRussia
  2. 2.Department of PharmacogeneticsV. V. Zakusov Research Institute of PharmacologyMoscowRussia

Personalised recommendations