Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 451–453 | Cite as

Analgesic Effect of Xenon in Rat Model of Inflammatory Pain

  • M. L. Kukushkin
  • S. I. Igon’kina
  • S. V. Potapov
  • A. V. Potapov
Article

The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

Key Words

xenon analgesia rat formalin inflammatory pain model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burov NE, Potapov VN. Xenon in Medicine: Essays on the History of Medical Xenon. Moscow, 2012. Russian.Google Scholar
  2. 2.
    Igon’kina SI, Vetrile LA, Kukushkin ML. Intrathecal administration of antibodies to excitatory neurotransmitter glutamate decreases spontaneous pain episodes in rats with neuropathic pain. Patogenez. 2014;12(3):48-49. Russian.Google Scholar
  3. 3.
    Kukushkin ML, Igonkina SI. Effect of L-lysine escinate on pain sensitivity in rats. Ros. Zh. Boli. 2015;(2):9-11. Russian.Google Scholar
  4. 4.
    Kukushkin ML, Igonkina SI. Significance of GABA in pain syndrome pathogenes. Patol. Fiziol. Eksper. Ter. 2014;(1):68-78. Russian.Google Scholar
  5. 5.
    Kukushkin ML, Khitrov NK. General Pathology of Pain. Moscow, 2004. Russian.Google Scholar
  6. 6.
    Stryapko NV, Sazontova TG, Potievskaya VI, Khairullina AA, Vdovina IB, Kulikov AN, Arkhipenko YuV, Molchanov IV. Adaptation effect of repeated Xenon application. 2014;10(2):50-56.Google Scholar
  7. 7.
    Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology. 2007;107(5):756-767.CrossRefPubMedGoogle Scholar
  8. 8.
    Esencan E, Yuksel S, Tosun YB, Robinot A, Solaroglu I, Zhang JH. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia. Med. Gas Res. 2013;3(1):4. doi:  10.1186/2045-9912-3-4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia. Nature. 1998;396:324.CrossRefPubMedGoogle Scholar
  10. 10.
    Froeba G, Georgieff M, Linder EM, Föhr KJ, Weigt HU, Holsträter TF, Kölle MA, Adolph O. Intranasal application of xenon:describing the pharmacokinetics in experimental animals and the increased pain tolerance within a placebo-controlledexperimental human study. Br. J. Anaesth. 2010. doi: 10.1093/bja/aep395.PubMedGoogle Scholar
  11. 11.
    Georgiev SK, Furue H, Baba H, Kohno T. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons. Mol. Pain. 2010;6:25. doi:  10.1186/1744-8069-6-25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. L. Kukushkin
    • 1
    • 2
  • S. I. Igon’kina
    • 1
  • S. V. Potapov
    • 1
  • A. V. Potapov
    • 1
  1. 1.Research Institute of General Pathology and Pathological PhysiologyMoscowRussia
  2. 2.I. M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations