Bulletin of Experimental Biology and Medicine

, Volume 162, Issue 4, pp 436–440 | Cite as

Involvement of Glucagon-Like Peptide-1 in the Regulation of Selective Excretion of Sodium or Chloride Ions by the Kidneys

  • A. S. Marina
  • A. V. Kutina
  • E. I. Shakhmatoba
  • Yu. V. Natochin
BIOPHYSICS AND BIOCHEMISTRY

An increase of total glucagon-like peptide-1 (GLP-1) concentration in the plasma in rats was revealed 5 min after oral, but not intraperitoneal administration of NaCl or Trizma HCl solutions. The increase in GLP-1 level was similar to that after oral glucose administration. After intraperitoneal administration of 2.5% NaCl, GLP-1 mimetic exenatide accelerated natriuresis and urinary chloride excretion. Under conditions of normonatriemia and hyperchloremia induced by injection of 6.7% Trizma HCl, exenatide stimulated chloride excretion and reabsorption of sodium ions in the kidneys. These findings suggest that GLP-1 participates in selective regulation of the balance of sodium and chloride ions.

Key Words

kidneys glucagon-like peptide-1 exenatide sodium ion excretion chloride ion excretion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Natochin YV, Marina AS, Kutina AV. Redistribution of proximal and distal reabsorption of water and ions in rat kidney after treatment with glucagon-like peptide-1 Mimetic. Bull. Exp. Biol. Med. 2015;160(7):3-12.Google Scholar
  2. 2.
    Natochin YV, Marina AS, Kutina AV. The role of incretin as an integrator of sodium and water balance regulation. Doklady Biol. Sci. 2014;458(1):271-274.CrossRefGoogle Scholar
  3. 3.
    Ahrén B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam. Horm. 2010;84:203-220.CrossRefPubMedGoogle Scholar
  4. 4.
    Andersen LJ, Andersen JL, Pump B, Bie P. Natriuresis induced by mild hypernatremia in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282(6):R1754-R1761.CrossRefPubMedGoogle Scholar
  5. 5.
    Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2009;297(6):F1647-F1655.CrossRefPubMedGoogle Scholar
  6. 6.
    Cho YM, Fujita Y, Kieffer TJ. Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 2014;76:535-559.CrossRefPubMedGoogle Scholar
  7. 7.
    Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am. J. Physiol. Renal Physiol. 2011;301(2):F355-F363.CrossRefPubMedGoogle Scholar
  8. 8.
    Jentsch TJ. Chloride transport in the kidney: lessons from human disease and knockout mice. J. Am. Soc. Nephrol. 2005;16(6):1549-1561.CrossRefPubMedGoogle Scholar
  9. 9.
    Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV. Role of vasopressin in the regulation of renal sodium excretion: interaction with glucagon-like peptide-1. J. Neuroendocrinol. 2016;28(4):doi:  10.1111/jne.12367.
  10. 10.
    Kutina AV, Marina AS, Shakhmatova EI, Natochin YuV. Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin. Exp. Pharmacol. Physiol. 2013;40(8):510-517.Google Scholar
  11. 11.
    Lindgren O, Pacini G, Tura A, Holst JJ, Deacon CF, Ahrén B. Incretin effect after oral amino acid ingestion in humans. J. Clin. Endocrinol. Metab. 2015;100(3):1172-1176.CrossRefPubMedGoogle Scholar
  12. 12.
    Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA. Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One. 2013;8(1):e55286.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin. J. Am. Soc. Nephrol. 2015;10(4):676-687.CrossRefPubMedGoogle Scholar
  14. 14.
    Thomson SC, Kashkouli A, Singh P. Glucagon-like peptide-1 receptor stimulation increases GFR and suppresses proximal reabsorption in the rat. Am. J. Physiol. Renal Physiol. 2013;304(2):F137-F144.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. S. Marina
    • 1
  • A. V. Kutina
    • 1
  • E. I. Shakhmatoba
    • 1
  • Yu. V. Natochin
    • 1
  1. 1.I. M. Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations