Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 156, Issue 2, pp 213–216 | Cite as

Ridostin Induces Transcription of a Wide Spectrum of Interferon Genes in Human Cells

  • T. M. Sokolova
  • A. N. Shuvalov
  • M. V. Telkov
  • L. V. Kolodyazhnaya
  • F. I. Ershov
Article

The effects of Ridostin on the transcription of IFN family genes in human fibroblasts and lymphocytes were studied by quantitative real-time PCR. The degree of gene induction by Ridostin was most pronounced in fibroblasts, and was significantly higher than the induction by Kagocel: transcription of IFN-β, oligoadenylate synthetase, and double-stranded RNA-dependent protein kinase genes increased by about 2000, 100, and 20 times, respectively. In lymphocytes, Ridostin also activated a wide variety of IFN family genes, including genes of IFN-α, IFN-γ, and IFN-dependent enzymes, but this induction was less pronounced than in the fibroblasts. It was shown that gene response in lymphocyte from a child with cancer is reduced in comparison with that of adult healthy participant. Ridostin, and even more so Reaferon up-regulated activities of β-actin, glycerophosphate dehydrogenase, and β2- microglobulin genes, thus making impossible or limiting their use as constitutive stable reference genes (standards) in PCR-assays of IFN and their inductors.

Key Words

Ridostin Reaferon transcription of interferon genes real-time polymerase chain reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. I. Ershov, Antiviral Drugs. Reference Book. (Edition 2) [in Russian], Moscow (2006).Google Scholar
  2. 2.
    Patent RF No. 20832.21, Interferon Inductor Ridostin, Yu. S. Alikin, K. N. Verevkina, E. D. Dubatolova, et al., Byull. Izobr, No. 19 (1997).Google Scholar
  3. 3.
    M. G. Romantsov and S. V. Golofeevskii, Antibiot. Khimioter., No. 1-2, 30–35 (2010).Google Scholar
  4. 4.
    T. M. Sokolova, Interferon-2011 [in Russian], Moscow (2012), 52–62.Google Scholar
  5. 5.
    T. M. Sokolova, O. V. Bibikova, N. S. Bystrov, et al., Vopr. Virusol., 50, No. 1, 19–22 (2005).PubMedGoogle Scholar
  6. 6.
    T. M. Sokolova, N. E. Fedorova, M. G. Medzhidova, et al., Med. Immunol., 9, No. 4-5, 457–466 (2007).Google Scholar
  7. 7.
    S. J. De Witte-Orr, D. R. Mehta, S. E. Collins, et al., J. Immunol., 183, No. 10, 6545–6553 (2009).CrossRefGoogle Scholar
  8. 8.
    M. P. Gantier, and B. R. Williams, Cytokine Growth Factor Rev., 18, No. 5-6, 363–371 (2007).PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    S. Goodbourn, L. Didcock, and R. E. Randall, J. Gen. Virol., 81, Pt. 10, 2341–2364 (2000).PubMedGoogle Scholar
  10. 10.
    H. W. Rho, B. C. Lee, E. S. Choi, et al., BMC Cancer., 10, 240 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    G. C. Sen, and S. Sarkar, Cytokine Growth Factor Rev., 16, No. 1, 1–14 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Shrout, M. Yousefzadeh, A. Dodd, et al., Br. J. Cancer., 98, No. 12, 1999–2005 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    W. Ye, H. L. Chang, L. S. Wang, et al., Intern. J. Mol. Med., 26, No. 1, 113–119 (2010).Google Scholar
  14. 14.
    M. Yoneyama and T. Fujita, Rev. Med. Virol., 20, No. 1, 4–22 (2010).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Zhang, and D. E. Zhang, J. Interf. Cytokine Res., 31, No. 1, 119–130 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. M. Sokolova
    • 1
    • 2
  • A. N. Shuvalov
    • 1
  • M. V. Telkov
    • 1
  • L. V. Kolodyazhnaya
    • 1
  • F. I. Ershov
    • 1
  1. 1.N. F. Gamalea Institute of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.D. I. Ivanoskii Institute of VirologyMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations