Robust circumnavigation of a heterogeneous multi-agent system

Abstract

This paper focuses on the design of robust control laws for a heterogeneous multi-agent system composed of omnidirectional and differential-drive mobile robots under the leader–follower scheme and considering the distance and orientation measurements. It is assume that the agent leader is an omnidirectional mobile robot moving freely in the plane while the rest of the agents are the followers. The control laws are designed by means of the Backstepping approach. It is proved that, although the control laws do not need information about the velocity of the leader, the followers will circumnavigate the leader. Numerical simulations and real-time experiments exhibit the performance of the proposed control strategy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Notes

  1. 1.

    https://www.dropbox.com/s/az3wed1tevq8i0k/Circumnavigation3agents.mp4?dl=0.

References

  1. Bechliouli, C. P., Demetriou, M. A., & Kyriakopoulos, K. J. (2018). A distributed control and parameter estimation protocol with prescribed performance for homogeneous Lagrangian multi-agent systems. Autonomous Robots, 42(8), 1525–1541.

    Article  Google Scholar 

  2. Boccia, A., Adaldo, A., Dimarogonas, D. V., di Bernardo, M., & Johansson, K. H. (2017). Tracking a mobile target by multi-robot circumnavigation using bearing measurements. In Proceedings of the 56th annual conference on decision and control, Melbourne, Australia (pp. 1076–1081).

  3. Deghat, M., Shames, I., Anderson, B. D. O., & Yu, C. (2014). Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Transactions on Automatic Control, 59(8), 2182–2188.

    MathSciNet  Article  Google Scholar 

  4. DongBin, S., ZhenDong, S., & WeiJie, S. (2014). Leader–follower formation control without leader’s velocity information. Science China Information Sciences, 57, 1–12.

    MATH  Google Scholar 

  5. González-Sierra, J., Hernández-Martínez, E. G., Ferreira-Vazquez, E., Flores-Godoy, J., Fernandez-Anaya, G., & Paniagua-Contro, P. (2018). Leader–follower control strategy with rigid body behavior. IFAC PapersOnLine, 51(22), 184–189.

    Article  Google Scholar 

  6. Khalil, H. (2002). Nonlinear systems. Upper Saddle River: Prentice Hall.

    Google Scholar 

  7. Li, G., St-Onge, D., Pinciroli, C., Gasparri, A., Garone, E., & Beltrame, G. (2018). Decentralized progressive shape formation with robot swarms. Autonomous Robots, 43(6), 1505–1521.

    Article  Google Scholar 

  8. Li, G., Wang, X., & Li, S. (2020). Consensus control of higher-order lipschitz non-linear multi-agent systems based on backstepping method. IET Control Theory & Applications, 14(3), 490–498.

    Article  Google Scholar 

  9. Lopez-Gonzalez, A., Ferreira, E. D., Hernandez-Martinez, E. G., Flores-Godoy, J. J., Fernandez-Anaya, G., & Paniagua-Contro, P. (2016). Multi-robot formation control using distance and orientation. Advanced Robotics, 30(14), 901–913.

    Article  Google Scholar 

  10. Paniagua-Contro, P., Hernández-Martínez, E. G., González-Medina, O., González-Sierra, J., Ferreira-Vazquez, E., Flores-Godoy, J., et al. (2019). Extension of leader–follower behaviours for wheeled mobile robots in multi-robot coordination. Mathematical Problems in Engineering, 2019, 1–16. https://doi.org/10.1155/2019/4957259.

    Article  MATH  Google Scholar 

  11. Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: Taxonomy and survey. Autonomous Robots, 40(4), 729–760.

    Article  Google Scholar 

  12. Shames, I., Dasgupta, S., Fidan, B., & Anderson, B. D. O. (2012). Circumnavigation using distance measurements under slow drift. IEEE Transactions on Automatic Control, 57(4), 889–903.

    MathSciNet  Article  Google Scholar 

  13. Shao, J., & Tian, Y. (2017). Multi-target localization and circumnavigation control by a group of moving agents. In Proceedings of the 13th IEEE international conference on control and automation, Ohrid, Macedonia (pp. 606–611).

  14. Zhao, Y., Zhang, Y., & Lee, J. (2019). Lyapunov and sliding mode based leader–follower formation control for multiple mobile robots with an augmente distance-angle strategy. International Journal of Control, Automation and Systems, 17(X), 1–8.

    Google Scholar 

  15. Zheng, R., Lin, Z., Fu, M., & Sun, D. (2013). Distributed circumnavigation by unicycles with cyclic repelling strategies. In Proceedings of the 9th Asian control conference, Istanbul, Turkey.

  16. Zhong, H., Miao, Y., Tan, Z., Li, J., Zhang, H., & Fierro, R. (2019). Circumnavigation of a moving target in 3d by multi-agent systems with collision avoidance: An orthogonal vector fields-based approach. International Journal of Control, Automation and Systems, 17(1), 212–224.

    Article  Google Scholar 

Download references

Acknowledgements

D. Flores-Montes gratefully acknowledges the financial support from CONACYT [Grant Number 887913]. All the authors gratefully acknowledge the support from Univerisdad Iberoamericana DINVP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaime González-Sierra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8492 KB)

Supplementary material 2 (mp4 11390 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Sierra, J., Flores-Montes, D., Hernandez-Martinez, E.G. et al. Robust circumnavigation of a heterogeneous multi-agent system. Auton Robot 45, 265–281 (2021). https://doi.org/10.1007/s10514-020-09962-5

Download citation

Keywords

  • Circumnavigation
  • Leader–follower
  • Backstepping
  • Omnidirectional robot
  • Differential-drive robot