Skip to main content
Log in

Estimating boundary dynamics using robotic sensor networks with pointwise measurements

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper, we consider environmental boundaries that can be represented by a time-varying closed curve. We use n robots equipped with location sensors to sample the dynamic boundary. The main difficulty during the prediction process is that only n boundary points can be observed at each time step. Our approach combines finite Fourier series for shape-estimation and polynomial fitting for point tracking in time. This combination gives a continuous parametric function that describes the boundary shape and its dynamics. We validate our strategy in simulation and with experiments using actual robots. We tested on non-convex boundaries assuming noisy measurements and inaccurate motion actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The dataset: https://github.com/dsaldana/boundary-dataset

  2. The video is available at https://youtu.be/Zwc6vNuUFDw

References

  • Barat, C., & Rendas, M. J. (2003). Benthic boundary tracking using a profiler sonar. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), (Vol. 1, pp. 830–835). IEEE

  • Bertozzi, A. L., Kemp, M., & Marthaler, D. (2005). Determining environmental boundaries: Asynchronous communication and physical scales (pp. 25–42). Berlin: Springer. https://doi.org/10.1007/978-3-540-31595-7_2.

    Book  Google Scholar 

  • Bruemmer, D. J., Dudenhoeffer, D. D., McKay, M. D., & Anderson, M. O. (2002). A robotic swarm for spill finding and perimeter formation. DTIC Document, Technical Report.

  • Casbeer, D., Beard, R., McLain, T., Li, S., & Mehra, R. (2005). Forest fire monitoring with multiple small uavs. In Proceedings of the 2005 American Control Conference (pp. 3530–3535). IEEE.

  • Casbeer, D., Kingston, D., Beard, R., & McLain, T. (2006). Cooperative forest fire surveillance using a team of small unmanned air vehicles. International Journal of Systems Science, 37(6), 351–360.

    Article  Google Scholar 

  • Clark, J., & Fierro, R. (2005). Cooperative hybrid control of robotic sensors for perimeter detection and tracking. In Proceedings of the 2005, American Control Conference (pp. 3500–3505).

  • Cortés, J. (2012). Cooperative detection of areas of rapid change in spatial fields. Automatica, 48(4), 673–681.

    Article  MathSciNet  Google Scholar 

  • Cruz, D., McClintock, J., Perteet, B., Orqueda, O., Cao, Y., & Fierro, R. (2007). Decentralized cooperative control: A multivehicle platform for research in networked embedded systems. IEEE Control Systems, 27(3), 58–78. https://doi.org/10.1109/MCS.2007.365004.

    Article  Google Scholar 

  • Duttagupta, S., Ramamritham, K., & Kulkarni, P. (2011). Tracking dynamic boundaries using sensor network. IEEE Transactions on Parallel and Distributed Systems, 22(10), 1766–1774.

    Article  Google Scholar 

  • Fahad, M., Saul, N., Guo, Y., & Bingham, B. (2015). Robotic simulation of dynamic plume tracking by unmanned surface vessels. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2654–2659). https://doi.org/10.1109/ICRA.2015.7139557.

  • Franchi, A., Stegagno, P., Di Rocco, M., & Oriolo, G. (2010). Distributed target localization and encirclement with a multi-robot system. In 7th IFAC Symposium on Intelligent Autonomous Vehicles (pp. 151–156).

  • Hsieh, C. H., Jin, Z., Marthaler, D., Nguyen, B. Q., Tung, D. J., Bertozzi, A. L., & Murray, R. M. (2005). Experimental validation of an algorithm for cooperative boundary tracking. In Proceedings of the 2005 American Control Conference (Vol. 2, pp. 1078–1083)

  • Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(05), 691–701.

    Article  Google Scholar 

  • Jin, Z., & Bertozzi, A. L. (2007). Environmental boundary tracking and estimation using multiple autonomous vehicles. In 2007 46th IEEE Conference on Decision and Control (pp. 4918–4923). https://doi.org/10.1109/CDC.2007.4434857.

  • Joshi, A., Ashley, T., Huang, Y.R., & Bertozzi, A. L. (2009). Experimental validation of cooperative environmental boundary tracking with on-board sensors. In Proceedings of the 2009 Conference on American Control Conference, ACC’09 (pp. 2630–2635).

  • Kemp, M., Bertozzi, A. L., & Marthaler, D. (2004). Multi-uuv perimeter surveillance. In 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No. 04CH37578) (pp. 102–107).

  • Li, S., Guo, Y., & Bingham, B. (2014). Multi-robot cooperative control for monitoring and tracking dynamic plumes. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 67–73).

  • Marthaler, D., Bertozzi, A. (2003a). Collective motion algorithms for determining environmental boundaries. In SIAM Conference on Applications of Dynamical Systems

  • Marthaler, D., & Bertozzi, A. (2003b). Tracking environmental level sets with autonomous vehicles. Journal of the Electrochemical Society, 129, 2865.

    Google Scholar 

  • Matveev, A. S., Hoy, M. C., Ovchinnikov, K., Anisimov, A., & Savkin, A. V. (2015). Robot navigation for monitoring unsteady environmental boundaries without field gradient estimation. Automatica, 62, 227–235.

    Article  MathSciNet  Google Scholar 

  • Matveev, A. S., Semakova, A. A., & Savkin, A. V. (2017). Tight circumnavigation of multiple moving targets based on a new method of tracking environmental boundaries. Automatica, 79, 52–60.

    Article  MathSciNet  Google Scholar 

  • Mellucci, C., Menon, P., Edwards, C., & Challenor, P. (2017). Experimental validation of boundary tracking using the suboptimal sliding mode algorithm. In 2017 American Control Conference (pp. 4878–4883).

  • Menon, P. P., & Ghose, D. (2013). Boundary mapping of 3-dimensional regions. In 2013 American Control Conference (pp. 2984–2989). https://doi.org/10.1109/ACC.2013.6580288.

  • Menon, P.P., Edwards, C., Shtessel, Y. B., Ghose, D., & Haywood, J. (2014). Boundary tracking using a suboptimal sliding mode algorithm. In 53rd IEEE Conference on Decision and Control (pp. 5518–5523). https://doi.org/10.1109/CDC.2014.7040252.

  • Nagarathna, S. V. (2015). An adaptive refresh distributed model for estimation and efficient tracking of dynamic boundaries. In: 2015 Twenty First National Conference on Communications (NCC) (pp. 1–6).

  • Nagarathna, Valli S., & Manjunath, D. (2014). A spatio-temporal model for estimation and efficient tracking of dynamic boundaries. In 2014 Twentieth National Conference on Communications (NCC) (pp. 1–6). https://doi.org/10.1109/NCC.2014.6811335.

  • Pettersson, L. H., & Pozdnyakov, D. (2012). Monitoring of harmful algal blooms. Berlin: Springer.

    Google Scholar 

  • Saldaña, D., Assunção, R., & Campos, M. (2015). A distributed multi-robot approach for the detection and tracking of multiple dynamic anomalies. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1262–1267). https://doi.org/10.1109/ICRA.2015.7139353.

  • Saldaña, D., Assunção, R., & Campos, M. (2016). Predicting environmental boundary behaviors with a mobile robot. IEEE Robotics and Automation Letters, 1(2), 1133–1139. https://doi.org/10.1109/LRA.2016.2522500.

    Article  Google Scholar 

  • Saldaña, D., Assunção, R., Hsieh, M. A., Campos, M. F. M., & Kumar, V. (2017). Cooperative prediction of time-varying boundaries with a team of robots. In: 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS) (pp 9–16). https://doi.org/10.1109/MRS.2017.8250925.

  • Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 21(1), 124–127.

    Article  MathSciNet  Google Scholar 

  • Smith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological processes, 11(10), 1427–1439.

    Article  Google Scholar 

  • Srinivasan, S., Ramamritham, K., & Kulkarni, P. (2008). Ace in the hole: Adaptive contour estimation using collaborating mobile sensors. In: 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008) (pp. 147–158). https://doi.org/10.1109/IPSN.2008.38.

  • Susca, S., Bullo, F., & Martinez, S. (2008). Monitoring environmental boundaries with a robotic sensor network. IEEE Transactions on Control Systems Technology, 16(2), 288–296.

    Article  Google Scholar 

  • Susca, S., Bullo, F., & Martinez, S. (2009). Gradient algorithms for polygonal approximation of convex contours. Automatica, 45(2), 510–516. https://doi.org/10.1016/j.automatica.2008.08.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Turgeman, A., & Werner, H. (2017). Mission control-combined solutions for source seeking and level curve tracking in a time-varying field. In: 2017 American Control Conference (pp. 4268–4273).

  • White, B., Tsourdos, A., Ashokaraj, I., Subchan, S., & Zbikowski, R. (2007). Contaminant cloud boundary monitoring using uav sensor swarms. In AIAA Guidance, Navigation and Control Conference and Exhibit (p. 6761).

  • Zhang, F., & Leonard, N. E .(2005). Generating contour plots using multiple sensor platforms. In: IEEE Swarm Intelligence Symposium (pp. 309–316).

  • Zhang, F., & Leonard, N. E. (2010). Cooperative filters and control for cooperative exploration. IEEE Transactions on Automatic Control, 55(3), 650–663. https://doi.org/10.1109/TAC.2009.2039240.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, G., Fricke, G. K., & Garg, D. P. (2013). Spill detection and perimeter surveillance via distributed swarming agents. IEEE/ASME Transactions on Mechatronics, 18(1), 121–129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Saldaña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of the several papers published in Autonomous Robots comprising the Special Issue on Multi-Robot and Multi-Agent Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldaña, D., Assunção, R., Hsieh, M.A. et al. Estimating boundary dynamics using robotic sensor networks with pointwise measurements. Auton Robot 45, 193–208 (2021). https://doi.org/10.1007/s10514-020-09954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09954-5

Keywords

Navigation