Advertisement

Autonomous Robots

, Volume 43, Issue 8, pp 1957–1976 | Cite as

Versatile and robust bipedal walking in unknown environments: real-time collision avoidance and disturbance rejection

  • Arne-Christoph Hildebrandt
  • Robert WittmannEmail author
  • Felix Sygulla
  • Daniel Wahrmann
  • Daniel Rixen
  • Thomas Buschmann
Article
  • 755 Downloads

Abstract

Autonomous navigation in complex environments featuring obstacles, varying ground compositions, and external disturbances requires real-time motion generation and stabilization simultaneously. In this paper, we present and evaluate a strategy for rejection of external disturbances and real-time motion generation in the presence of obstacles and non-flat ground. We propose different solutions for combining the associated algorithms and analyze them in simulations The promising method is validated in experiments with our robot Lola. We found a hierarchical approach to be effective for solving these complex motion generation problems, because it allows us to decompose the problem into sub-problems that can be tackled separately at different levels. This makes the approach suitable for real-time applications and robust against perturbations and errors. Our results show that real-time motion planning and disturbance rejection can be combined to improve the autonomy of legged robots.

Keywords

Bipedal walking Autonomous navigation Real-time motion generation Perturbation rejection Collision avoidance 

Notes

Acknowledgements

The DAAD and the Deutsche Forschungsgemeinschaft (DFG Project BU 2736/1-1) support this project. Special thanks go to our fantastic student Lisa Jeschek for her help in developing and implementing these ideas.

Supplementary material

Supplementary material 1 (mp4 6615 KB)

References

  1. Arbulu, M., Kheddar, A., & Yoshida, E. (2010). An approach of generic solution for humanoid stepping over motion. In IEEE-RAS international conference on humanoid robots (pp. 474–479). IEEE.Google Scholar
  2. Buschmann, T. (2010). Simulation and control of biped walking robots. Ph.D. thesis.Google Scholar
  3. Buschmann, T., Favot, V., Lohmeier, S., Schwienbacher, M., & Ulbrich, H. (2011). Experiments in fast biped walking. In IEEE international conference on mechatronics (pp. 863–868).Google Scholar
  4. Buschmann, T., Lohmeier, S., & Ulbrich, H. (2010). Entwurf und Regelung des Humanoiden Laufroboters Lola. at - Automatisierungstechnik, 58(11), 613–621.CrossRefGoogle Scholar
  5. Chestnutt, J., Michel, P., Nishiwaki, K., Kuffner, J., & Kagami, S. (2006). An intelligent joystick for biped control. In IEEE international conference on robotics and automation (pp. 860–865). IEEE.Google Scholar
  6. Chestnutt, J., & Takaoka, Y. (2010). Safe adjustment regions for legged locomotion paths. In IEEE international conference on humanoid robotics (pp. 224–229).Google Scholar
  7. Chestnutt, J., Takaoka, Y., Suga, K., Nishiwaki, K., Kuffner, J., & Kagami, S. (2009). Biped navigation in rough environments using on-board sensing. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  8. Deits, R., & Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer convex optimization. In IEEE-RAS international conference on humanoid robots.Google Scholar
  9. Deits, R., & Tedrake, R. (2015). Computing large convex regions of obstacle-free space through semidefinite programming. In H. L. Akin, N. M. Amato, V. Isler, & A. F. van der Stappen (Eds.), Algorithmic foundations of robotics XI (pp. 109–124). Berlin: Springer.CrossRefGoogle Scholar
  10. Englsberger, J., & Ott, C. (2012). Integration of vertical COM motion and angular momentum in an extended capture point tracking controller for bipedal walking. In IEEE-RAS international conference on humanoid robots (pp. 183–189).Google Scholar
  11. Fallon, M. F., Marion, P., Deits, R., Whelan, T., Antone, M., Mcdonald, J., & Tedrake, R. (2015). Continuous humanoid locomotion over uneven terrain using stereo fusion. In IEEE/RAS international conference on humanoid robots.Google Scholar
  12. Fujimoto, Y., Obata, S., & Kawamura, A. (1998). Robust biped walking with active interaction control between foot and ground. IEEE International Conference on Robotics and Automation, 3, 2030–2035.CrossRefGoogle Scholar
  13. Greene, H. (1983). The decomposition of polygons into convex parts. In F. P. Preparata (Ed.), Computational geometry (Vol. 1). Greenwich: JAI Press.Google Scholar
  14. Guan, Y., Yokoi, K., & Tanie, K. (2005). Feasibility: Can humanoid robots overcome given obstacles? In IEEE international conference on robotics and automation (Vol. 1, pp. 1054–1059). IEEE.Google Scholar
  15. Guan, Y., Yokoi, K., & Tanie, K. (2006). Stepping over obstacles with humanoid robots. IEEE Transactions on Robotics, 22(5), 958–973.CrossRefGoogle Scholar
  16. Gutmann, J. S., Fukuchi, M., & Fujita, M. (2008). 3D perception and environment map generation for humanoid robot navigation. The International Journal of Robotics Research, 27(10), 1117–1134.CrossRefGoogle Scholar
  17. Hildebrandt, A. C., Demmeler, M., Wittmann, R., Wahrmann, D., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Real-time predictive kinematic evaluation and optimization for biped robots. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  18. Hildebrandt, A. C., Wahrmann, D., Wittmann, R., Rixen, D., & Buschmann, T. (2015). Real-time pattern generation among obstacles for biped robots. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2780–2786).Google Scholar
  19. Hildebrandt, A. C., Wittmann, R., Wahrmann, D., Ewald, A., & Buschmann, T. (2014). Real-time 3D collision avoidance for biped robots. In IEEE/RSJ international conference on intelligent robots and systems (pp. 4184–4190).Google Scholar
  20. Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. IEEE International Conference on Robotics and Automation, 2, 1321–1326.CrossRefGoogle Scholar
  21. Hodgins, J., & Raibert, M. (1991). Adjusting step length for rough terrain locomotion. IEEE Transactions on Robotics and Automation, 7(3), 289–298.CrossRefGoogle Scholar
  22. Karkowski, P., & Bennewitz, M. (2016). Real-time footstep planning using a geometric approach. In IEEE international conference on robotics and automation.Google Scholar
  23. Kuindersma, S., Deits, R., Andr, M. F., Dai, H., Permenter, F., Pat, K., et al. (2015). Optimization-based locomotion planning, estimation and control design for the atlas humanoid robot. Autonomous Robots, 40(3), 1–27.Google Scholar
  24. Kuindersma, S., Permenter, F., & Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE international conference on robotics and automation (pp. 2589–2594).Google Scholar
  25. Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, 12, 868–871.zbMATHGoogle Scholar
  26. Liu, H., Liu, W., & Latecki, L. J. (2010). Convex shape decomposition. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (pp. 97–104).Google Scholar
  27. Loffler, K., Gienger, M., & Pfeiffer, F. (2002). Model based control of a biped robot. In 7th international workshop on advanced motion control (pp. 443–448).Google Scholar
  28. Lohmeier, S. (2009). System design and control of anthropomorphic walking robot LOLA. IEEE/ASME Transactions on Mechatronics, 14(6), 658–666.CrossRefGoogle Scholar
  29. Lohmeier, S., Loffler, K., Gienger, M., Ulbrich, H., & Pfeiffer, F. (2004). Computer system and control of biped “Johnnie”. In IEEE international conference on robotics and automation (pp. 4222–4227). IEEE.Google Scholar
  30. Maier, D., Lutz, C., & Bennewitz, M. (2013). Integrated perception, mapping, and footstep planning for humanoid navigation among 3D obstacles. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2658–2664). IEEE.Google Scholar
  31. Michel, P., & Chestnutt, J. (2007). GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing. In IEEE/RSJ international conference on intelligent robots and systems (pp. 463–469). IEEE.Google Scholar
  32. Naveau, M., Kudruss, M., Stasse, O., Kirches, C., Mombaur, K., & Souères, P. (2017). A reactive walking pattern generator based on nonlinear model predictive control. IEEE Robotics and Automation Letters, 2(1), 10–17.CrossRefGoogle Scholar
  33. Nishiwaki, K. (2011). Online design of torso height trajectories for walking patterns that takes future kinematic limits into consideration. In International conference on control, automation and systems (pp. 2029–2034). IEEE.Google Scholar
  34. Nishiwaki, K., & Kagami, S. (2009a). Frequent walking pattern generation that uses estimated actual posture for robust walking control. In IEEE/RAS international conference on humanoid robots (pp. 535–541).Google Scholar
  35. Nishiwaki, K., & Kagami, S. (2009b). Online walking control system for humanoids with short cycle pattern generation. The International Journal of Robotics Research, 28(6), 729–742.CrossRefGoogle Scholar
  36. Nocedal, J., & Wright, S. J. (2004). Numerical optimization (pp. 1–651). Berlin: Springer.Google Scholar
  37. Okada, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Plane segment finder: Algorithm, implementation and applications. In IEEE international conference on robotics and automation.Google Scholar
  38. Perrin, N., Stasse, O., Baudouin, L., Lamiraux, F., & Yoshida, E. (2012). Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Transactions on Robotics, 28(2), 427–439.CrossRefGoogle Scholar
  39. Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In IEEE/RAS international conference on humanoid robots (pp. 200–207).Google Scholar
  40. Rebula, J., Canas, F., Pratt, J., & Goswami, A. (2007). Learning capture points for humanoid push recovery. In IEEE/RAS international conference on humanoid robots (pp. 65–72).Google Scholar
  41. Sabe, K., Fukuchi, M., Gutmann, J. S., Ohashi, T., Kawamoto, K., & Yoshigahara, T. (2004). Obstacle avoidance and path planning for humanoid robots using stereo vision. In IEEE international conference on robotics and automation (pp. 592–597). IEEE.Google Scholar
  42. Sarmiento, A., Murrieta-Cid, R., & Hutchinson, S. (2005). A sample-based convex cover for rapidly finding an object in a 3-D environment. IEEE International Conference on Robotics and Automation, 2005, 3486–3491.Google Scholar
  43. Schwienbacher, M. (2012). Vertical angular momentum minimization for biped robots with kinematically redundant joints. In International congress of theoretical and applied mechanics (pp. 8–9).Google Scholar
  44. Schwienbacher, M., Buschmann, T., Lohmeier, S., Favot, V., & Ulbrich, H. (2011). Self-collision avoidance and angular momentum compensation for a biped humanoid robot. In IEEE international conference on robotics and automation (pp. 581–586).Google Scholar
  45. Sherikov, A., Dimitrov, D., & Wieber, P. B. (2014). Whole body motion controller with long-term balance constraints. In IEEE/RAS international conference on humanoid robots (pp. 444–450).Google Scholar
  46. Stasse, O., Verrelst, B., Vanderborght, B., & Yokoi, K. (2009). Strategies for humanoid robots to dynamically walk over large obstacles. IEEE Transactions on Robotics, 25(4), 960–967.CrossRefGoogle Scholar
  47. Stumpf, A., Kohlbrecher, S., Conner, D. C., & von Stryk, O. (2014). Supervised footstep planning for humanoid robots in rough terrain tasks using a black box walking controller. In IEEE/RAS international conference on humanoid robots (pp. 287–294).Google Scholar
  48. Tajima, R., Honda, D., & Suga, K. (2009). Fast running experiments involving a humanoid robot. In IEEE international conference on robotics and automation (pp. 1571–1576).Google Scholar
  49. Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S., Kaneko, H., & Orita, A. (2009). Real time motion generation and control for biped robot—4th report: Integrated balance control. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1601–1608).Google Scholar
  50. Urata, J., Nishiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., & Inaba, M. (2011). Online decision of foot placement using singular LQ preview regulation. In IEEE-RAS international conference on humanoid robots (pp. 13–18).Google Scholar
  51. Wahrmann, D., Hildebrandt, A. C., Wittmann, R., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Fast object approximation for real-time 3D obstacle avoidance with biped robots. In IEEE international conference on advanced intelligent mechatronics.Google Scholar
  52. Wahrmann, D., Hildebrandt, A. C., Wittmann, R., Sygulla, F., Seiwald, P., Rixen, D., & Buschmann, T. (2018). Vision-based 3D modeling of unknown dynamic environments for real-time humanoid navigation (preprint, submitted to the international journal of humanoid robotics). International Journal of Humanoid Robotics (in submission).Google Scholar
  53. Whitney, D. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man Machine Systems, 10(2), 47–53.MathSciNetCrossRefGoogle Scholar
  54. Wieber, P. B. (2006). Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In IEEE-RAS international conference on humanoid robots (pp. 137–142).Google Scholar
  55. Wittmann, R., Hildebrandt, A. C., Ewald, A., & Buschmann, T. (2014). An estimation model for footstep modifications of biped robots. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2572–2578).Google Scholar
  56. Wittmann, R., Hildebrandt, A. C., Wahrmann, D., Buschmann, T., & Rixen, D. (2015a). State estimation for biped robots using multibody dynamics. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2166–2172).Google Scholar
  57. Wittmann, R., Hildebrandt, A. C., Wahrmann, D., Rixen, D., & Buschmann, T. (2015b). Real-time nonlinear model predictive footstep optimization for biped robots. In IEEE-RAS international conference on humanoid robots (pp. 711–717).Google Scholar
  58. Wittmann, R., Hildebrandt, A. C., Wahrmann, D., Sygulla, F., Rixen, D., & Buschmann, T. (2016). Model-based predictive bipedal walking stabilization. In IEEE-RAS international conference on humanoid robots.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Technical University of MunichGarchingGermany

Personalised recommendations