Advertisement

Coordination of multiple AGVs: a quadratic optimization method

  • Valerio Digani
  • M. Ani Hsieh
  • Lorenzo Sabattini
  • Cristian Secchi
Article
  • 217 Downloads

Abstract

This paper presents an optimization strategy to coordinate a fleet of Automated Guided Vehicles (AGVs) traveling on ad-hoc pre-defined roadmaps. Specifically, the objective is to maximize traffic throughput of AGVs navigating in an automated warehouse by minimizing the time AGVs spend negotiating complex traffic patterns to avoid collisions with other AGVs. In this work, the coordination problem is posed as a Quadratic Program where the optimization is performed in a centralized manner. The proposed method is validated by means of simulations and experiments for different industrial warehouse scenarios. The performance of the proposed strategy is then compared with a recently proposed decentralized coordination strategy that relies on local negotiations for shared resources. The results show that the proposed coordination strategy successfully maximizes vehicle throughput and significantly minimizes the time vehicles spend negotiating traffic under different scenarios.

Keywords

Multi-robot coordination Quadratic optimization AGV systems Path planning 

Supplementary material

Supplementary material 1 (avi 18450 KB)

References

  1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., & Robert, F. (1998). Multi-robot cooperation in the martha project. IEEE Robotics Automation Magazine, 5(1), 36–47.  https://doi.org/10.1109/100.667325.CrossRefGoogle Scholar
  2. Beinschob, P., Meyer, M., Reinke, C., Digani, V., Secchi, C., & Sabattini, L. (2017). Semi-automated map creation for fast deployment of AGV fleets in modern logistics. Robotics and Autonomous Systems, 87, 281–295.CrossRefGoogle Scholar
  3. Bennewitz, M., Burgard, W., & Thrun, S. (2001). Constraint-based optimization of priority schemes for decoupled path planning techniques. In: KI 2001: Advances in artificial intelligence (pp. 78–93). Springer.Google Scholar
  4. Cap, M., Novak, P., Kleiner, A., & Selecky, M. (2015). Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Transactions on Automation Science and Engineering, 12(3), 835–849.  https://doi.org/10.1109/TASE.2015.2445780.CrossRefGoogle Scholar
  5. Digani, V., Hsieh, M., Sabattini, L., & Secchi, C. (2015a). A quadratic programming approach for coordinating multi-AGV systems. In Proceedings of the IEEE international conference on automation science and engineering (CASE). Gothenburg.Google Scholar
  6. Digani, V., Sabattini, L., & Secchi, C. (2016). A probabilistic eulerian traffic model for the coordination of multiple AGVs in automatic warehouses. IEEE Robotics and Automation Letters, 1(1), 26–32.CrossRefGoogle Scholar
  7. Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2014a). An automatic approach for the generation of the roadmap for multi-AGV systems in an industrial environment. In IEEE International conference on intelligent robots and systems (IROS).Google Scholar
  8. Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2014b). Hierarchical traffic control for partially decentralized coordination of multi AGV systems in industrial environments. In IEEE International conference on robotics and automation (ICRA).Google Scholar
  9. Digani, V., Sabattini, L., Secchi, C., & Fantuzzi, C. (2015b). Ensemble coordination approach in multi-AGV systems applied to industrial warehouses. IEEE Transactions on Automation Science and Engineering, 12(3), 922–934.  https://doi.org/10.1109/TASE.2015.2446614.
  10. Fanti, M., Mangini, A., Pedroncelli, G., & Ukovich, W. (2015). Decentralized deadlock-free control for AGV systems. In American control conference (ACC), 2015 (pp. 2414–2419).  https://doi.org/10.1109/ACC.2015.7171094.
  11. Habib, D., Jamal, H., & Khan, S. A. (2013). Employing multiple unmanned aerial vehicles for co-operative path planning. International Journal of Advanced Robotic Systems, 10, 235.CrossRefGoogle Scholar
  12. Hoshino, S., & Seki, H. (2013). Multi-robot coordination for jams in congested systems. Robotics and Autonomous Systems, 61, 808–820.CrossRefGoogle Scholar
  13. Hui, N. (2010). Coordinated motion planning of multiple mobile robots using potential field method. In: 2010 International conference on industrial electronics, control robotics (IECR) (pp. 6–11).  https://doi.org/10.1109/IECR.2010.5720131.
  14. Jager, M., & Nebel, B. (2001). Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots. In Proceedings of the IEEE/RSJ International conference on intelligent robots and systems, 2001 (Vol. 3, pp. 1213–1219).  https://doi.org/10.1109/IROS.2001.977148.
  15. Kavraki, L., Svestka, P., Latombe, J. C., & Overmars, M. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRefGoogle Scholar
  16. LaValle, S., & Hutchinson, S. (1998). Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6), 912–925.  https://doi.org/10.1109/70.736775.CrossRefGoogle Scholar
  17. LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  18. Makarem, L. & Gillet, D. (2012). Fluent coordination of autonomous vehicles at intersections. IEEE International conference on systems, man, and cybernetics (SMC), 2012 (pp. 2557–2562).  https://doi.org/10.1109/ICSMC.2012.6378130.
  19. Manca, S., Fagiolini, A., & Pallottino, L. (2011). Decentralized coordination system for multiple AGVs in a structured environment. In 18th World congress of the international federation of automatic control (IFAC 2011) (Vol. 18, pp. 6005–6010).Google Scholar
  20. Mather, T. W., Braun, C., & Hsieh, M. A. (2010). Distributed filtering for time-delayed deployment to multiple sites (best paper award winner). In 10th International symposium on distributed autonomous robotics systems (DARS 2010). Lausanne.Google Scholar
  21. Mather, T. W., & Hsieh, M. A. (2010). Ensemble modeling and control for congestion management in automated warehouses (best paper finalist). In IEEE International conference on automation science and engineering (CASE 2012). Seoul.Google Scholar
  22. Olmi, R., Secchi, C., & Fantuzzi, C. (2008). Coordination of multiple AGVs in an industrial application. In IEEE International conference on robotics and automation, 2008. ICRA 2008 (pp. 1916–1921).Google Scholar
  23. Olmi, R., Secchi, C., & Fantuzzi, C. (2011). Coordination of industrial AGVs. International Journal of Vehicle Autonomous Systems, 9(1), 5–25.CrossRefGoogle Scholar
  24. Pallottino, L., Scordio, V. G., Bicchi, A., & Frazzoli, E. (2007). Decentralized cooperative policy for conflict resolution in multivehicle systems. IEEE Transactions on Robotics, 23(6), 1170–1183.  https://doi.org/10.1109/TRO.2007.909810.CrossRefGoogle Scholar
  25. Park, B., Choi, J., & Chung, W. K. (2012). An efficient mobile robot path planning using hierarchical roadmap representation in indoor environment. IEEE International conference on robotics and automation, 2012 (pp. 180–186).  https://doi.org/10.1109/ICRA.2012.6225368.
  26. Pecora, F., Cirillo, M., & Dimitrov, D. (2012). On mission-dependent coordination of multiple vehicles under spatial and temporal constraints. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 5262–5269). IEEE.Google Scholar
  27. Peng, J., & Akella, S. (2005) Coordinating multiple double integrator robots on a roadmap: Convexity and global optimality. In Robotics and automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International conference on (pp. 2751–2758). IEEE.Google Scholar
  28. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source Software, 3, 5.Google Scholar
  29. Reveliotis, S., & Roszkowska, E. (2011). Conflict resolution in free-ranging multivehicle systems: A resource allocation paradigm. IEEE Transactions on Robotics, 27(2), 283–296.  https://doi.org/10.1109/TRO.2010.2098270.CrossRefGoogle Scholar
  30. Sabattini, L., Digani, V., Lucchi, M., Secchi, C., & Fantuzzi, C. (2015). Mission assignment for multi-vehicle systems in industrial environments. In Proceedings of the IFAC symposium on robot control (SYROCO). Salvador.Google Scholar
  31. Sabattini, L., Digani, V., Secchi, C., Cotena, G., Ronzoni, D., Foppoli, M., et al. (2013). Technological roadmap to boost the introduction of AGVs in industrial applications. In IEEE International conference on intelligent computer communication and processing (ICCP).Google Scholar
  32. Sabattini, L., Digani, V., Secchi, C., & Fantuzzi, C. (2016). Hierarchical coordination strategy for multi-AGV systems based on dynamic geodesic environment partitioning. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS). Daejeon.Google Scholar
  33. Secchi, C., Olmi, R., Rocchi, F., & Fantuzzi, C. (2015). A dynamic routing strategy for the traffic control of AGVs in automatic warehouses. In Robotics and automation (ICRA), 2015 IEEE International conference on (pp. 3292–3297).  https://doi.org/10.1109/ICRA.2015.7139653.
  34. Siméon, T., Leroy, S., & Lauumond, J. P. (2002). Path coordination for multiple mobile robots: A resolution-complete algorithm. IEEE Transactions on Robotics and Automation, 18(1), 42–49.CrossRefGoogle Scholar
  35. van den Berg, J., & Overmars, M. (2005). Prioritized motion planning for multiple robots. In Intelligent robots and systems, 2005 (IROS 2005). 2005 IEEE/RSJ International Conference on (pp. 430–435).  https://doi.org/10.1109/IROS.2005.1545306.
  36. Yang, P., Freeman, R., & Lynch, K. (2008). Multi-agent coordination by decentralized estimation and control. IEEE Transactions on Automatic Control, 53(11), 2480–2496.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Zhang, Y., & Mehrjerdi, H. (2013). A survey on multiple unmanned vehicles formation control and coordination: Normal and fault situations. In International conference on unmanned aircraft systems (ICUAS) (pp. 1087–1096). IEEE.Google Scholar
  38. Zheng, K., Tang, D., Gu, W., & Dai, M. (2013). Distributed control of multi-AGV system based on regional control model. Production Engineering, 7, 433–441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Elettric80 s.p.a.VianoItaly
  2. 2.Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Sciences and Methods for Engineering (DISMI)University of Modena and Reggio EmiliaReggio EmiliaItaly

Personalised recommendations