Skip to main content
Log in

Designing a quasi-spherical module for a huge modular robot to create programmable matter

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

There are many ways to implement programmable matter. One is to build it as a huge modular self-reconfigurable robot composed of a large set of spherical micro-robots, like in the Claytronics project. These micro-robots must be able to stick to each other and move around each other. However, the shape of these micro-robots has not been studied yet and remains a difficult problem as there are numerous constraints to respect. In this article, we propose a quasi-spherical structure for these micro-robots, which answers all the constraints for building programmable matter, helping the realization of an interactive computer-aided design framework. We study different scenarios, validate the ability to move and propose methods for manufacturing these micro-robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Video at https://youtu.be/tgW3w9dhrxc shows a full version of the deformation process to construct a catom from a planar material.

References

  • Boillot, N., Dhoutaut, D., & Bourgeois, J. (2014). Using nano-wireless communications in micro-robots applications. NANOCOM 2014, 1st ACM international conference on nanoscale computing and communication (pp. 1–9). Atlanta, Georgia, USA: ACM.

  • Boillot, N., Dhoutaut, D., & Bourgeois, J. (2015). New applications for MEMS modular robots using wireless communications. IEEE Systems Journal, PP(99), 1–13.

    Google Scholar 

  • Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Tucci, T., Mabed, H., Douthaut, D. & Boillot, N. (2016). Programmable matter as a cyber-physical conjugation. In IEEE international conference on systems, man and cybernetics (SMC). IEEE, October 2016.

  • Bourgeois, J., & Goldstein, S. C. (2012). Distributed intelligent MEMS: Progresses and perspectives. In L. Kocarev (Ed.), ICT Innovations 2011 (Vol. 150, pp. 15–25)., Advances in Intelligent and Soft Computing Berlin: Springer.

    Chapter  Google Scholar 

  • Bourgeois, J., & Goldstein, S. C. (2015). Distributed intelligent MEMS: Progresses and perspectives. IEEE Systems Journal, 9(3), 1057–1068.

    Article  Google Scholar 

  • Chirikjian, G. S. (1994). Kinematics of a metamorphic robotic system. In IEEE international conference on robotics and automation (ICRA) (pp. 449–455). IEEE.

  • Conway, J., & Sloane, N. (1993). Sphere packings, lattices and groups. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag.

  • Davey, J., Kwok, N. & Yim, M. (2012). Emulating self-reconfigurable robots—design of the smores system. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4464–4469), Vilamoura, Algarve, Portugal, October 7–12 2012.

  • El Baz, D., Boyer, V., Bourgeois, J., Dedu, E., & Boutoustous, K. (2012). Distributed part differentiation in a smart surface. Mechatronics, 22(5), 522–530.

    Article  Google Scholar 

  • Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (cebot) as one of the realization of self-organizing intelligent universal manipulator. In IEEE international conference on robotics and automation (ICRA) (pp. 662–667).

  • Fukuda, T., Kawauchi, Y. & Buss, M. (1989). Communication method of cellular robotics cebot as a selforganizing robotic system. In IEEE/RSJ international workshop on intelligent robots and systems’ 89. The autonomous mobile robots and its applications. IROS’89. Proceedings (pp. 291–296). IEEE.

  • Gillies, A. G., & Fearing, R. S. (2010). A micromolded connector for reconfigurable millirobots. Journal of Micromechanics and Microengineering, 20(10), 105011–22.

    Article  Google Scholar 

  • Gilpin, K., Knaian, A. & Rus, D. (2010). Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In IEEE international conference on robotics and automation (ICRA) (pp. 2485–2492), 3–7 May 2010.

  • Gilpin, K., Kotay, K. & Rus, D. (2007). Miche: Modular shape formation by self-dissasembly. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 2241–2247).

  • Holobut, P., Kursa, M. & Lengiewicz, J. (2015). Efficient modular-robotic structures to increase the force-to-weight ratio of scalable collective actuators. In IROS, 2015 IEEE/RSJ international conference on intelligent robots and systems (pp. 3302–3307). Hamburg, Germany.

  • Karagozler, M. E. (2012). Design, fabrication and characterization of an autonomous, sub-millimeter scale modular robot. Ph.D. dissertation, Carnegie Mellon University.

  • Karagozler, M. E., Thaker, A., Goldstein, S. C. & Ricketts, D. S. (2011). Electrostatic actuation and control of micro robots using a post-processed high-voltage soi cmos chip. In IEEE international symposium on circuits and systems (ISCAS), 2011 (pp. 2509–2512). May 2011.

  • Karagozler, M. E., Thaker, A., Goldstein, S. C. & Ricketts, D. S. (2011). Electrostatic actuation and control of micro robots using a post-processed high-voltage soi cmos chip. In IEEE international symposium on circuits and systems (ISCAS).

  • Kim, J.-H., Kubota, M., Higo, A., Abe, H., Oka, Y. & Mita, Y. (2009). A curvature controlled flexible silicon micro electrode array to wrap neurons for signal analysis. In Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International (pp. 1810–1813). IEEE.

  • Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T. & Goldstein, S. C. (2005). Catoms: Moving robots without moving parts. In Proceedings of the national conference on artificial intelligence (Vol. 20(4), p. 1730). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, 1999, 2005.

  • Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.

    Article  Google Scholar 

  • Piranda, B., & Bourgeois, J. (2016). Geometrical study of a quasi-spherical module for building programmable matter. 2016 13th international symposium on distributed autonomous robotic systems (DARS) (pp. 1–12). London, UK: Springer.

  • Piranda, B., Laurent, G. J., Bourgeois, J., Clévy, C., & Le Fort-Piat, N. (2013). A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics, 23(7), 906–915.

    Article  Google Scholar 

  • Reid, J. R., Vasilyev, V., & Webster, R. T. (2008). Building micro-robots: A path to sub-mm\(^3\) autonomous systems. In Proceedings of nanotech (Vol. 3, pp. 174–177).

  • Romanishin, J., Gilpin, K. & Rus, D. (2013). M-blocks: Momentum-driven, magnetic modular robots. In IROS (pp. 4288–4295). IEEE.

  • Srisomrun, S., Mita, Y., Hoshino, K., Sugiyama, M. & Shibata, T. (2007). “Silicon on pdms”: Soi extra thin active layer transferred to organic film for flexible applications. In IEEE 20th international conference on micro electro mechanical systems, 2007. MEMS (pp. 263–266). IEEE.

  • Stoy, K., Brandt, D., Christensen, D. J., & Brandt, D. (2010). Self-reconfigurable Robots: An Introduction. Cambridge: MIT Press.

    Google Scholar 

  • Strand, R., Nagy, B., & Borgefors, G. (2011). Digital distance functions on three-dimensional grids. Theoretical Computer Science, 412(15), 1350–1363.

    Article  MathSciNet  Google Scholar 

  • Vad, V., Csebfalvi, B., Rautek, P. & Gr"oller, M. E. (2014). Towards an unbiased comparison of cc, bcc, and fcc lattices in terms of prealiasing. Computer Graphics Forum, 33(3), pp. 81–90. [Online]. Available: https://www.cg.tuwien.ac.at/research/publications/2014/Rautek_Peter_2014_TUC/.

  • Yim, M., Duff, D. G. & Roufas, K. D. (2000). Polybot: A modular reconfigurable robot. In IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 514–520).

  • Yim, M., White, P., Park, M. & Sastra, J. (2009). Modular self-reconfigurable robots. In Encyclopedia of complexity and systems science (pp. 5618–5631). Springer.

  • Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. Robotics Automation Magazine IEEE, 14(1), 43–52.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by ANR (ANR-16-CE33-0022-02), the French “Investissements d’Avenir?”? program, ISITE-BFC project (ANR-15-IDEX-03), Labex ACTION program (ANR-11-LABX-01-01) and Mobilitech project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Piranda.

Additional information

This is one of several papers published in Autonomous Robots comprising the “Special Issue on Distributed Robotics: From Fundamentals to Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piranda, B., Bourgeois, J. Designing a quasi-spherical module for a huge modular robot to create programmable matter. Auton Robot 42, 1619–1633 (2018). https://doi.org/10.1007/s10514-018-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9710-0

Keywords

Navigation