Advertisement

Designing a quasi-spherical module for a huge modular robot to create programmable matter

  • Benoit Piranda
  • Julien Bourgeois
Article
Part of the following topical collections:
  1. Special Issue on Distributed Robotics: From Fundamentals to Applications

Abstract

There are many ways to implement programmable matter. One is to build it as a huge modular self-reconfigurable robot composed of a large set of spherical micro-robots, like in the Claytronics project. These micro-robots must be able to stick to each other and move around each other. However, the shape of these micro-robots has not been studied yet and remains a difficult problem as there are numerous constraints to respect. In this article, we propose a quasi-spherical structure for these micro-robots, which answers all the constraints for building programmable matter, helping the realization of an interactive computer-aided design framework. We study different scenarios, validate the ability to move and propose methods for manufacturing these micro-robots.

Keywords

Modular robots Programmable matter Micro-robot Self-reconfiguration 

Notes

Acknowledgements

This work has been funded by ANR (ANR-16-CE33-0022-02), the French “Investissements d’Avenir?”? program, ISITE-BFC project (ANR-15-IDEX-03), Labex ACTION program (ANR-11-LABX-01-01) and Mobilitech project.

References

  1. Boillot, N., Dhoutaut, D., & Bourgeois, J. (2014). Using nano-wireless communications in micro-robots applications. NANOCOM 2014, 1st ACM international conference on nanoscale computing and communication (pp. 1–9). Atlanta, Georgia, USA: ACM.Google Scholar
  2. Boillot, N., Dhoutaut, D., & Bourgeois, J. (2015). New applications for MEMS modular robots using wireless communications. IEEE Systems Journal, PP(99), 1–13.Google Scholar
  3. Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Tucci, T., Mabed, H., Douthaut, D. & Boillot, N. (2016). Programmable matter as a cyber-physical conjugation. In IEEE international conference on systems, man and cybernetics (SMC). IEEE, October 2016.Google Scholar
  4. Bourgeois, J., & Goldstein, S. C. (2012). Distributed intelligent MEMS: Progresses and perspectives. In L. Kocarev (Ed.), ICT Innovations 2011 (Vol. 150, pp. 15–25)., Advances in Intelligent and Soft Computing Berlin: Springer.CrossRefGoogle Scholar
  5. Bourgeois, J., & Goldstein, S. C. (2015). Distributed intelligent MEMS: Progresses and perspectives. IEEE Systems Journal, 9(3), 1057–1068.CrossRefGoogle Scholar
  6. Chirikjian, G. S. (1994). Kinematics of a metamorphic robotic system. In IEEE international conference on robotics and automation (ICRA) (pp. 449–455). IEEE.Google Scholar
  7. Conway, J., & Sloane, N. (1993). Sphere packings, lattices and groups. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag.Google Scholar
  8. Davey, J., Kwok, N. & Yim, M. (2012). Emulating self-reconfigurable robots—design of the smores system. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4464–4469), Vilamoura, Algarve, Portugal, October 7–12 2012.Google Scholar
  9. El Baz, D., Boyer, V., Bourgeois, J., Dedu, E., & Boutoustous, K. (2012). Distributed part differentiation in a smart surface. Mechatronics, 22(5), 522–530.CrossRefGoogle Scholar
  10. Fukuda, T., & Kawauchi, Y. (1990). Cellular robotic system (cebot) as one of the realization of self-organizing intelligent universal manipulator. In IEEE international conference on robotics and automation (ICRA) (pp. 662–667).Google Scholar
  11. Fukuda, T., Kawauchi, Y. & Buss, M. (1989). Communication method of cellular robotics cebot as a selforganizing robotic system. In IEEE/RSJ international workshop on intelligent robots and systems’ 89. The autonomous mobile robots and its applications. IROS’89. Proceedings (pp. 291–296). IEEE.Google Scholar
  12. Gillies, A. G., & Fearing, R. S. (2010). A micromolded connector for reconfigurable millirobots. Journal of Micromechanics and Microengineering, 20(10), 105011–22.CrossRefGoogle Scholar
  13. Gilpin, K., Knaian, A. & Rus, D. (2010). Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In IEEE international conference on robotics and automation (ICRA) (pp. 2485–2492), 3–7 May 2010.Google Scholar
  14. Gilpin, K., Kotay, K. & Rus, D. (2007). Miche: Modular shape formation by self-dissasembly. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 2241–2247).Google Scholar
  15. Holobut, P., Kursa, M. & Lengiewicz, J. (2015). Efficient modular-robotic structures to increase the force-to-weight ratio of scalable collective actuators. In IROS, 2015 IEEE/RSJ international conference on intelligent robots and systems (pp. 3302–3307). Hamburg, Germany.Google Scholar
  16. Karagozler, M. E. (2012). Design, fabrication and characterization of an autonomous, sub-millimeter scale modular robot. Ph.D. dissertation, Carnegie Mellon University.Google Scholar
  17. Karagozler, M. E., Thaker, A., Goldstein, S. C. & Ricketts, D. S. (2011). Electrostatic actuation and control of micro robots using a post-processed high-voltage soi cmos chip. In IEEE international symposium on circuits and systems (ISCAS), 2011 (pp. 2509–2512). May 2011.Google Scholar
  18. Karagozler, M. E., Thaker, A., Goldstein, S. C. & Ricketts, D. S. (2011). Electrostatic actuation and control of micro robots using a post-processed high-voltage soi cmos chip. In IEEE international symposium on circuits and systems (ISCAS).Google Scholar
  19. Kim, J.-H., Kubota, M., Higo, A., Abe, H., Oka, Y. & Mita, Y. (2009). A curvature controlled flexible silicon micro electrode array to wrap neurons for signal analysis. In Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International (pp. 1810–1813). IEEE.Google Scholar
  20. Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T. & Goldstein, S. C. (2005). Catoms: Moving robots without moving parts. In Proceedings of the national conference on artificial intelligence (Vol. 20(4), p. 1730). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, 1999, 2005.Google Scholar
  21. Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the atron lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.CrossRefGoogle Scholar
  22. Piranda, B., & Bourgeois, J. (2016). Geometrical study of a quasi-spherical module for building programmable matter. 2016 13th international symposium on distributed autonomous robotic systems (DARS) (pp. 1–12). London, UK: Springer.Google Scholar
  23. Piranda, B., Laurent, G. J., Bourgeois, J., Clévy, C., & Le Fort-Piat, N. (2013). A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics, 23(7), 906–915.CrossRefGoogle Scholar
  24. Reid, J. R., Vasilyev, V., & Webster, R. T. (2008). Building micro-robots: A path to sub-mm\(^3\) autonomous systems. In Proceedings of nanotech (Vol. 3, pp. 174–177).Google Scholar
  25. Romanishin, J., Gilpin, K. & Rus, D. (2013). M-blocks: Momentum-driven, magnetic modular robots. In IROS (pp. 4288–4295). IEEE.Google Scholar
  26. Srisomrun, S., Mita, Y., Hoshino, K., Sugiyama, M. & Shibata, T. (2007). “Silicon on pdms”: Soi extra thin active layer transferred to organic film for flexible applications. In IEEE 20th international conference on micro electro mechanical systems, 2007. MEMS (pp. 263–266). IEEE.Google Scholar
  27. Stoy, K., Brandt, D., Christensen, D. J., & Brandt, D. (2010). Self-reconfigurable Robots: An Introduction. Cambridge: MIT Press.Google Scholar
  28. Strand, R., Nagy, B., & Borgefors, G. (2011). Digital distance functions on three-dimensional grids. Theoretical Computer Science, 412(15), 1350–1363.MathSciNetCrossRefMATHGoogle Scholar
  29. Vad, V., Csebfalvi, B., Rautek, P. & Gr"oller, M. E. (2014). Towards an unbiased comparison of cc, bcc, and fcc lattices in terms of prealiasing. Computer Graphics Forum, 33(3), pp. 81–90. [Online]. Available: https://www.cg.tuwien.ac.at/research/publications/2014/Rautek_Peter_2014_TUC/.
  30. Yim, M., Duff, D. G. & Roufas, K. D. (2000). Polybot: A modular reconfigurable robot. In IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 514–520).Google Scholar
  31. Yim, M., White, P., Park, M. & Sastra, J. (2009). Modular self-reconfigurable robots. In Encyclopedia of complexity and systems science (pp. 5618–5631). Springer.Google Scholar
  32. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., et al. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. Robotics Automation Magazine IEEE, 14(1), 43–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FEMTO-ST Institute, CNRSUniversity of Bourgogne Franche-ComtéMontbéliardFrance

Personalised recommendations