Advertisement

Autonomous Robots

, Volume 42, Issue 3, pp 649–663 | Cite as

Range-only SLAM for robot-sensor network cooperation

  • Arturo Torres-González
  • Jose Ramiro Martinez-de Dios
  • Anibal Ollero
Article

Abstract

This work is motivated by schemes of robot-sensor network cooperation where sensor nodes—beacons—are used as landmarks for range-only (RO) simultaneous localization and mapping (SLAM). In most existing RO-SLAM techniques beacons are considered as passive devices ignoring the capabilities they are actually endowed with. This paper proposes a RO-SLAM scheme that distributes the measurements gathering and integration between the beacons surrounding the robot. It naturally integrates inter-beacon measurements, significantly improving map and robot estimations and speeding up beacon initialization. The proposed scheme is based on sparse extended information filter (SEIF) and it is proven that it preserves the constant time and sparsity properties of SEIF and thus, inherits its efficiency and scalability. As a result, our scheme has lower robot and map estimation errors, faster beacon initialization and lower computer requirements than existing methods. This paper experimentally validates and evaluates the proposed method for 3D SLAM using an octorotor.

Keywords

SLAM Sensor networks Range-only SLAM UAS 

Notes

Acknowledgements

The authors thank A. Jiménez-Cano, V. Vega and J. Braga for their help and support in the 3D experiments.

References

  1. Banatre, M., Marron, P., Ollero, A., & Wolisz, A. (2008). Cooperating embedded systems and wireless sensor networks. New York: Wiley.CrossRefGoogle Scholar
  2. Blanco, J. L., Fernandez-Madrigal, J. A., & Gonzalez, J. (2008). Efficient probabilistic range-only slam. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1017 –1022).Google Scholar
  3. Brunner, C. J., Peynot, T., Vidal-Calleja, T. A., & Underwood, J. P. (2013). Selective combination of visual and thermal imaging for resilient localization in adverse conditions: Day and night, smoke and fire. Journal of Field Robotics, 30(4), 641–666.CrossRefGoogle Scholar
  4. Challa, S., Leipold, F., Deshpande, S., & Liu, M. (2005). Simultaneous localization and mapping in wireless sensor networks. In Intelligent sensors, sensor networks and information processing conference (pp. 81–87).Google Scholar
  5. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., & Sukhatme, G. (2006). Deployment and connectivity repair of a sensor net with a flying robot. In M. H. Ang, O. Khatib (Eds.), Experimental robotics IX. Springer tracts in advanced robotics (vol. 21, pp. 333–343). Springer, Berlin, Heidelberg.Google Scholar
  6. Djugash, J., Singh, S., & Grocholsky, B. (2008). Decentralized mapping of robot-aided sensor networks. In IEEE international conference on robotics and automation (ICRA 2008) (pp. 583–589).Google Scholar
  7. Djugash, J., Singh, S., Kantor, G., & Zhang, W. (2006). Range-only slam for robots operating cooperatively with sensor networks. In Proceedings of the IEEE international conference on robotics and automation, (ICRA) (pp. 2078 –2084).Google Scholar
  8. Eustice, R., Walter, M., & Leonard, J. (2005). Sparse extended information filters: Insights into sparsification. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3281–3288).Google Scholar
  9. Fabresse, F., Caballero, F., Maza, I., & Ollero, A. (2014). Localization and mapping for aerial manipulation based on range-only measurements and visual markers. In IEEE international conference on robotics and automation (ICRA 2014) (pp. 2100–2106).Google Scholar
  10. Frese, U. (2005). A proof for the approximate sparsity of slam information matrices. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 329–335).Google Scholar
  11. Frese, U. (2006). Treemap: An O(log \(n\)) algorithm for indoor simultaneous localization and mapping. Autonomous Robots, 21(2), 103–122.Google Scholar
  12. Frey, B. J., & MacKay, D. J. C. (1998). A revolution: Belief propagation in graphs with cycles. In Proceedings of the 1997 conference on advances in neural information processing systems (vol. 10, pp. 479–485). Denver, Colorado.Google Scholar
  13. Heredia, G., Jiménez-Cano, A., Sánchez, M., Llorente, D., Vega, V., Braga, J., et al. (2014). Control of a multirotor outdoor aerial manipulator. In IEEE/RSJ international conference on intelligent robots and systems (IROS).Google Scholar
  14. Liu, Y., & Thrun, S. (2003). Results for outdoor-slam using sparse extended information filters. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (vol. 1, pp. 1227–1233).Google Scholar
  15. Martínez-de Dios, J. R., de San Bernabé, A., Viguria, A., Torres-González, A., & Ollero, A. (2017). Combining unmanned aerial systems and sensor networks for earth observation. Remote Sensing, 9(4), 336.Google Scholar
  16. Martinez-de Dios, J. R., Lferd, K., de San Bernabe, A., Nunez, G., Torres-Gonzalez, A., & Ollero, A. (2013). Cooperation between UAS and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent & Robotic Systems, 70(1–4), 491–508.Google Scholar
  17. Martinez-de Dios, J. R., & Ollero, A. (2006). Automatic detection of windows thermal heat losses in buildings using UAVs. In World Automation Congress (pp. 1–6). Budapest.Google Scholar
  18. Maza, I., Caballero, F., Capitan, J., Martinez-de Dios, J. R., & Ollero, A. (2011). A distributed architecture for a robotic platform with aerial sensor transportation and self-deployment capabilities. Journal of Field Robotics, 28(3), 303–328.CrossRefGoogle Scholar
  19. Menegatti, E., Danieletto, M., Mina, M., Pretto, A., Bardella, A., Zanconato, S., et al. (2010). Autonomous discovery, localization and recognition of smart objects through WSN and image features. Proceedings of the IEEE GLOBECOM, 2010, 1653–1657.Google Scholar
  20. Menegatti, E., Zanella, A., Zilli, S., Zorzi, F., & Pagello, E. (2009). Range-only slam with a mobile robot and a wireless sensor networks. In IEEE international conference on robotics and automation (ICRA) (pp. 8–14).Google Scholar
  21. Nogueira, M., Sousa, J., & Pereira, F. (2010). Cooperative autonomous underwater vehicle localization. IEEE Oceans, 2010, 1–9.Google Scholar
  22. Olson, E., Leonard, J., & Teller, S. (2004). Robust range-only beacon localization. In Proceedings of the IEEE/OES autonomous underwater vehicles (pp. 66–75).Google Scholar
  23. Paskin, M. A. (2003). Thin junction tree filters for simultaneous localization and mapping. In G. Gottlob & T. Walsh (Eds.), Proceedings of the 18th international joint conference on artificial intelligence (IJCAI) (pp. 1157–1164). San Francisco, CA: Morgan Kaufmann.Google Scholar
  24. Salas, M., Hussain, W., Concha, A., Montano, L., Civera, J., & Montiel, J. (2015). Layout aware visual tracking and mapping. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 149–156).Google Scholar
  25. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (3rd ed.). Cambridge: MIT Press.MATHGoogle Scholar
  26. Thrun, S., & Liu, Y. (2005). Multi-robot SLAM with sparse extended information filers. In P. Dario, R. Chatila (Eds.), Robotics research. The eleventh international symposium. Springer tracts in advanced robotics (vol. 15, pp. 254–266). Springer, Berlin, Heidelberg.Google Scholar
  27. Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z., & Durrant-Whyte, H. (2004). Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 23(7–8), 693–716.CrossRefGoogle Scholar
  28. Torres-González, A., Martinez-de Dios, J., & Ollero, A. (2014a). Efficient robot-sensor network distributed seif range-only slam. In IEEE international conference on robotics and automation (ICRA 2014) (pp. 1319–1326).Google Scholar
  29. Torres-González, A., Martinez-de Dios, J. R., & Ollero, A. (2014b). An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements. Sensors, 14(5), 7684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Robotics, Vision and Control Research GroupUniversity of SevilleSevilleSpain

Personalised recommendations