Advertisement

Autonomous Robots

, Volume 42, Issue 3, pp 581–600 | Cite as

A kernel-based approach to learning contact distributions for robot manipulation tasks

  • Oliver Kroemer
  • Simon Leischnig
  • Stefan Luettgen
  • Jan Peters
Article
  • 356 Downloads

Abstract

Manipulation tasks often require robots to recognize interactions between objects. For example, a robot may need to determine if it has grasped an object properly or if one object is resting on another in a stable manner. These interactions usually depend on the contacts between the objects, with different distributions of contacts affording different interactions. In this paper, we address the problem of learning to recognize interactions between objects based on contact distributions. We present a kernel-based approach for representing the estimated contact distributions. The kernel can be used for various interactions, and it allows the robot to employ a variety of kernel methods from machine learning. The approach was evaluated on blind grasping, lifting, and stacking tasks. Using 30 training samples and the proposed kernel, the robot already achieved classification accuracies of 71.9, 85.93, and 97.5% for the blind grasping, lifting and stacking tasks respectively. The kernel was also used to cluster interactions using spectral clustering. The clustering method successfully differentiated between different types of interactions, including placing, inserting, and pushing. The contact points were extracted using tactile sensors or 3D point cloud models of the objects. The robot could construct small towers of assorted blocks using the classifier for the stacking task.

Keywords

Manipulation Robot learning Kernel methods Contacts Symbolic states Affordances 

References

  1. Abdo, N., Kretzschmar, H., Spinello, L., & Stachniss, C. (2013). Learning manipulation actions from a few demonstrations. In: International conference on robotics and automation (ICRA)Google Scholar
  2. Amores, J. (2013). Multiple instance classification: Review, taxonomy and comparative study. Artificial Intelligence, 201, 81–105.MathSciNetCrossRefMATHGoogle Scholar
  3. Bekiroglu, Y., Detry, R., & Kragic, D. (2011) Learning tactile characterizations of object- and pose-specific grasps. In: International conference on intelligent robots and systems (IROS)Google Scholar
  4. Ben Amor, H., Kroemer, O., Hillenbrand, U., Neumann, G., & Peters, J. (2012). Generalization of human grasping for multi-fingered robot hands. In: International conference on intelligent robots and systems (IROS)Google Scholar
  5. Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In: International conference on robotics and automation (ICRA)Google Scholar
  6. Bohg, J., Johnson-Roberson, M., León, B., Felip, J., Gratal, X., Bergström, N., Kragic, D., & Morales, A. (2011). Mind the gap–robotic grasping under incomplete observation. In: International conference on robotics and automation (ICRA)Google Scholar
  7. Bohg, J., Morales, A., Asfour, T., & Kragic, D. (2014). Data-driven grasp synthesis-a survey. IEEE Transactions on Robotics, 30, 289–309.CrossRefGoogle Scholar
  8. Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3d images with markov random fields. In: International conference on intelligent robot systems (IROS)Google Scholar
  9. Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., & Schaal, S. (2016). Generalizing regrasping with supervised policy learning. In: International symposium on experimental robotics (ISER)Google Scholar
  10. Chen, Z., Lii, N. Y., Wimboeck, T., Fan, S., Jin, M., Borst, C., & Liu, H. (2010). Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: International conference on intelligent robots and systems (IROS)Google Scholar
  11. Dang, H., & Allen, P. K. (2012). Learning grasp stability. In: International conference on robotics and automation (ICRA)Google Scholar
  12. Detry, R., Ek, C. H., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In: International conference on robotics and automation (ICRA)Google Scholar
  13. Eppner, C., & Brock, O. (2013). Grasping unknown objects by exploiting shape adaptability and environmental constraints. In: International conference on intelligent robots and systems (IROS)Google Scholar
  14. Ferrari, C., & Canny, J. (1992). Planning optimal grasps. In: International conference on robotics and automation (ICRA) pp 2290–2295Google Scholar
  15. Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  16. Griffith, S., Sinapov, J., Sukhoy, V., & Stoytchev, A. (2012). A behavior-grounded approach to forming object categories: Separating containers from noncontainers. IEEE Transactions on Autonomous Mental Development, 4(1), 54–69.CrossRefGoogle Scholar
  17. Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. K. (2009). The Columbia grasp database. In: International conference on robotics and automation (ICRA)Google Scholar
  18. Hermans, T., Li, F, Rehg, J. M., & Bobick, A. F. (2013). Learning contact locations for pushing and orienting unknown objects. In: International conference on humanoid robotsGoogle Scholar
  19. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., et al. (2013). Learning of grasp selection based on shape-templates. Autonomous Robots, 36, 51–65.CrossRefGoogle Scholar
  20. Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of StatisticsGoogle Scholar
  21. Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844.Google Scholar
  22. Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research (JMLR), 5, 819–844.MathSciNetMATHGoogle Scholar
  23. Jenssen, R., Principe, J. C., Erdogmus, D., & Eltoft, T. (2006). The cauchy-schwarz divergence and parzen windowing: Connections to graph theory and mercer kernels. Journal of the Franklin Institute, 343(6), 614–629.MathSciNetCrossRefMATHGoogle Scholar
  24. Jentoft, L. P., Tenzer, Y., Vogt, D., Liu, J., Wood, R. J., Howe, R. D. (2013). Flexible, stretchable tactile arrays from mems barometers. In: International conference on advanced robotics (ICAR)Google Scholar
  25. Jiang, Y., Lim, M., Zheng, C., & Saxena, A. (2012). Learning to place new objects in a scene. International Journal of Robotic Research (IJRR), 31(9), 1021–1043.CrossRefGoogle Scholar
  26. Kappler, D., Bohg, B., & Schaal, S. (2015). Leveraging big data for grasp planning. In: IEEE international conference on robotics and automation (ICRA)Google Scholar
  27. Karayiannidis, Y., Smith, C., Vina, F. E., & Kragic, D. (2014). Online contact point estimation for uncalibrated tool use. In: International conference on robotics and automation (ICRA)Google Scholar
  28. Kopicki, M., Detry, R., Adjigble, M., Stolkin, R., Leonardis, A., & Wyatt, J. L. (2015). One shot learning and generation of dexterous grasps for novel objects. The International Journal of Robotics Research (IJRR), 35, 959–976.CrossRefGoogle Scholar
  29. Kopicki, M. S., Zurek, S., Stolkin, R., Morwald, T., & Wyatt, J. L. (2011). Learning to predict how rigid objects behave under simple manipulation. In: International conference on robotics and automation (ICRA)Google Scholar
  30. Kroemer, O., Ben Amor, H., Ewerton, M., & Peters, J. (2012a). Point cloud completion using extrusions. In: The international conference on humanoid robotsGoogle Scholar
  31. Kroemer, O., Daniel, C., Neumann, G., van Hoof, H., & Peters, J. (2015). Towards learning hierarchical skills for multi-phase manipulation tasks. In: International conference on robotics and automation (ICRA)Google Scholar
  32. Kroemer, O., & Peters, J. (2014). Predicting object interactions from contact distributions. In: International conference on intelligent robots and systemsGoogle Scholar
  33. Kroemer, O., Ugur, E., Oztop, E., & Peters, J. (2012b). A kernel-based approach to direct action perception. In: International conference on robotics and automation (ICRA)Google Scholar
  34. Kulick, J., Lang, T., Toussaint, M., & Lopes, M. (2013). Active Learning for Teaching a Robot Grounded Relational Symbols. In: International joint conference on artificial intelligence (IJCAI)Google Scholar
  35. Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In: International conference on intelligent robots and systems (IROS)Google Scholar
  36. Leischnig, S., Luettgen, S., Kroemer, O., & Peters, J. (2015). A comparison of contact distribution representations for learning to predict object interactions. In: International conference on humanoid robotsGoogle Scholar
  37. Lenz, I., Lee, H., & Saxena, A. (2013). Deep learning for detecting robotic grasps. In: Robotics: Science and systems (RSS)Google Scholar
  38. Li, Q., Schürmann, C., Haschke, R., & Ritter, H. J. (2013) A control framework for tactile servoing. In: Robotics: Science and systems (R:SS)Google Scholar
  39. Li, Z., & Sastry, S. S. (1988). Task-oriented optimal grasping by multifingered robot hands. Journal of Robotics and Automation, 4(1), 32–44.Google Scholar
  40. Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.MathSciNetCrossRefGoogle Scholar
  41. Madry, M., Bo, L., Kragic, D., & Fox, D. (2014). ST-HMP: Unsupervised spatio-temporal feature learning for tactile data. In: International conference on robotics and automation (ICRA)Google Scholar
  42. Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In: International conference on robotics and automation (ICRA)Google Scholar
  43. Miller, A., & Allen, P. (2004). Graspit!: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11, 110–122.CrossRefGoogle Scholar
  44. Molchanov, A., Kroemer, O., Su, Z., & Sukhatme, G. S. (2016). Contact localization on grasped objects using tactile sensing. In: International conference on intelligent robots and systems (IROS)Google Scholar
  45. Montesano, L., Lopes, M., Bernardino, A., & Santos-Victor, J. (2007). Modeling affordances using bayesian networks. In: International conference on intelligent robot systems (IROS)Google Scholar
  46. Ning, X., & Karypis, G. (2008). The set classification problem and solution methods. In: International conference on data mining workshopsGoogle Scholar
  47. Odhner, L. U., Jentoft, L. P., Claffee, M. R., Corson, N., Tenzer, Y., Ma, R. R., et al. (2014). A compliant, underactuated hand for robust manipulation. The International Journal of Robotics Research (IJRR), 33(5), 736–752.CrossRefGoogle Scholar
  48. Roa, M. A., & Suàrez, R. (2015). Grasp quality measures: Review and performance. Autonomous Robots, 38, 65–88.CrossRefGoogle Scholar
  49. Rosman, B., & Ramamoorthy, S. (2011). Learning spatial relationships between objects. The International Journal of Robotics Research, 30, 1328–1342.CrossRefGoogle Scholar
  50. Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In: International conference on robotics and automation (ICRA)Google Scholar
  51. Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., & Ucoluk, G. (2007). To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control. Adaptive Behavior, 4, 447–472.CrossRefGoogle Scholar
  52. Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond (1st ed.). Cambridge: The MIT Press.Google Scholar
  53. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.Google Scholar
  54. Sjoo, K., & Jensfelt, P. (2011). Learning spatial relations from functional simulation. In: International conference on intelligent robots and systems (IROS)Google Scholar
  55. ten Pa, A., & Platt, R. (2015). Using geometry to detect grasp poses in 3d point clouds. In: International symposium on robotics research (ISRR)Google Scholar
  56. Trinkle, J., & Paul, R. P. (1990). Planning for dextrous manipulation with sliding contacts. International Journal of Robotics Research, 9(3), 24–48.CrossRefGoogle Scholar
  57. Ugur, E., & Piater, J. (2015). Bottom-up learning of object categories, action effects and logical rules: From continuous manipulative exploration to symbolic planning. In: International conference on robotics and automation (ICRA), pp 2627–2633Google Scholar
  58. Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple kernels for object detection. In: International conference on computer vision (ICCV)Google Scholar
  59. Veiga, F., van Hoof, H., Peters, J., & Hermans, T. (2015). Stabilizing novel objects by learning to predict tactile slip. In: International conference on intelligent robots and systems (IROS)Google Scholar
  60. Will, P. M., & Grossman, D. D. (1975). An experimental system for computer controlled mechanical assembly. IEEE Transactions on Computers, 24(9), 879–888.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Technische Universitaet DarmstadtDarmstadtGermany
  3. 3.MPI for Intelligent SystemsTuebingenGermany

Personalised recommendations