Skip to main content
Log in

Optimal self assembly of modular manipulators with active and passive modules

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper, we develop self-assembling robot systems composed of active modular robots and passive bars. The target structure is modeled as a dynamic graph. We present two provably correct algorithms for creating the structure. A decentralized optimal algorithm for the navigation of multiple modular robots on a partial truss structure is used to guide the robots to their location on the target structure. A decentralized algorithm for scheduling the transportation and placement of truss elements is used to coordinate the creation of the target structure. Both algorithms rely on locally optimal matching. The truss self-assembly algorithm has quadratic competitive ratio for static as well as dynamic graph representation. We show simulation results and results for experiments with two 3DOF robots and passive bars that can create and control a 6DOF manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almonacid, M., Saltarén, R. J., Aracil, R., & Reinoso, O. (2003). Motion planning of a climbing parallel robot. IEEE Transactions on Robotics and Automation, 19(3), 485–489.

    Article  Google Scholar 

  • Amano, H., Osuka, K., & Tarn, T. J. (2001). Development of vertically moving robot with gripping handrails for fire fighting. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, Maui, HI, USA (pp. 661–667).

    Google Scholar 

  • Asadpour, M., Ashtiani, M., Sproewitz, A., & Ijspeert, A. (2009). Graph signature for self-reconfiguration planning of modules with symmetry. In IEEE/RSJ international conference on intelligent robots and systems, St. Louis, USA (pp. 5295–5300).

    Google Scholar 

  • Ayanian, N., White, P., Halasz, A., Yim, M., & Kumar, V. (2008). Stochastic control for self-assembly of xbots. In Proceedings of ASME international design engineering technical conferences & computers and information in engineering conference, New York, NY, USA.

    Google Scholar 

  • Butler, Z., & Rus, D. (2003). Distributed planning and control for modular robots with unit-compressible modules. The International Journal of Robotics Research, 22(9), 699–715.

    Article  Google Scholar 

  • Castano, A., Shen, W., & Will, P. (2000). CONRO: towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8(3), 309–324.

    Article  Google Scholar 

  • Chiang, C. J., & Chirikjian, G. (2001). Modular robot motion planning using similarity metrics. Autonomous Robots, 10(1), 91–106.

    Article  MATH  Google Scholar 

  • Chirikjian, G., Pamecha, A., & Ebert-Uphoff, I. (1996). Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems, 13(5), 717–338.

    Article  Google Scholar 

  • Choi, H., Han, C., Lee, K., & Lee, S. (2005). Development of hybrid robot for construction works with pneumatic actuator. Automation in Construction, 14(4), 452–459.

    Article  Google Scholar 

  • Christensen, A.L., O’Grady, R., & Dorigo, M. (2008). Morphology control in a multirobot system. IEEE Robotics & Automation Magazine, 14(4), 18–25.

    Article  Google Scholar 

  • Detweiler, C., Vona, M., Yoon, Y., Yun, S., & Rus, D. (2007). Self-assembling mobile linkages. IEEE Robotics & Automation Magazine, 14(4), 45–55.

    Article  Google Scholar 

  • Duff, D., Yim, M., & Roufas, K. (2001). Evolution of polybot: a modular reconfigurable robot. In Proceedings of the harmonic drive international symposium, Nagano, Japan.

    Google Scholar 

  • Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2), 248–264.

    Article  MATH  Google Scholar 

  • Fahlman, S. (1973). A planning system for robot construction tasks (Tech. rep.). Massachusetts Institute of Technology, Cambridge, MA, USA.

  • Fichter, E. (1986). A Stewart-platform based manipulator: general theory and practical construction. The International Journal of Robotics Research, 5(2), 157–182.

    Article  Google Scholar 

  • Gilbin, K., & Rus, D. (2010). Modular robot systems. IEEE Robotics & Automation Magazine, 17, 38–55.

    Article  Google Scholar 

  • Hamacher, H., & Tjandra, S. (2001). Mathematical modeling of evacuation problems: state of the art. Pedestrian and evacuation dynamics (Tech. rep.). Institut Techno- und Wirtschaftsmathematik.

  • Hamlin, G., & Sanderson, A. (1997). Tetrobot: a modular approach to parallel robotics. IEEE Robotics & Automation Magazine, 4(1), 42–50.

    Article  Google Scholar 

  • Hou, F., Ranasinghe, N., Salemi, B., & Shen, W. M. (2008). Wheeled locomotion for payload carrying with modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 1331–1337).

    Google Scholar 

  • Jorgensen, M., Ostergaard, E., & Lund, H. (2004). Modular atron: Modules for a self-reconfigurable robot. In IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan (pp. 2068–2073).

    Google Scholar 

  • Kalayanasundaram, B., & Pruhs, K. (1993). Online weighted matching. Journal of Algorithms, 14(3), 478–488.

    Article  MathSciNet  Google Scholar 

  • Kalyanasundaram, B., & Pruhs, K. (1995). The online transportation problem. In ESA ’95: proceedings of the third Annual European Symposium on Algorithms (pp. 484–493). London: Springer.

    Google Scholar 

  • Kasper Støy (2005). The ATRON self-reconfigurable robot: challenges and future directions. In Workshop on self-reconfigurable robotics at the robotics science and systems conference.

    Google Scholar 

  • Khuller, S., Mitchell, S., & Vazirani, V (1994). On-line algorithms for weighted bipartite matching and stable marriages. Theory and Computational Science, 127(2), 255–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962.

    Article  MathSciNet  Google Scholar 

  • Kotay, K., & Rus, D. (2005). Efficient locomotion gait for a self-reconfiguring robot. In Proceedings of the IEEE international conference on robotics and automation, Barcelona, Spain (pp. 2963–2969).

    Chapter  Google Scholar 

  • Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic molecule. In IEEE International Conference on Robotics and Automation, Leuven, Belgium (pp. 424–431).

    Google Scholar 

  • Kotay, K. D., & Rus, D. L. (1996). Navigating 3d steel web structures with an inchworm robot. In Proceedings of the IEEE international conference on intelligent robots and systems.

    Google Scholar 

  • Kuhn, H. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.

    Article  MathSciNet  Google Scholar 

  • Kutzer, M., Moses, M., Brown, C., Armand, M., Scheidt, D., & Chirikjian, G. (2010). Design of a new independently-mobile reconfigurable modular robot. In International conference on robotics and automation, Anchorage, Alaska, USA (pp. 2758–2764).

    Chapter  Google Scholar 

  • Lee, S., Lee, K., Lee, S., Kim, J., & Han, C. (2007). Human-robot cooperation control for installing heavy construction materials. Autonomous Robots, 22(3), 305–319.

    Article  MATH  Google Scholar 

  • Lyder, A., Garcia, R., & Støy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 883–888).

    Google Scholar 

  • Matthey, L., Berman, S., & Kumar, V. (2009). Stochastic strategies for a swarm robotic assembly system. In Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1953–1958). New York: IEEE Press.

    Google Scholar 

  • Meyerson, A., Nanavati, A., & Poplawski, L. (2006). Randomized online algorithms for minimum metric bipartite matching. In ACM-SIAM symposium on discrete algorithms, Miami, Florida, USA (pp. 954–959).

    Chapter  Google Scholar 

  • Moses, M., Yamaguchi, H., & Chirikjian, G. (2009). Towards cyclic fabrication systems for modular robotics. In Proceedings of robotics: science and systems, Seattle, USA.

    Google Scholar 

  • Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-d self-reconfigurable structure. In Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium (pp. 432–439).

    Google Scholar 

  • Murata, S., Kakomura, K., & Kurokawa, H. (2008). Toward a scalable modular robotic system. IEEE Robotics & Automation Magazine, 14(4), 56–63.

    Article  Google Scholar 

  • Nechyba, M., & Xu, Y. (1995). Human-robot cooperation in space: SM2 for new space station structure. IEEE Robotics & Automation Magazine, 2(4), 4–11.

    Article  Google Scholar 

  • Pamecha, A., Chiang, C., Stein, D., & Chirikjian, G. (1996). Design and implementation of metamorphic robots. In The 1996 ASME design engineering technical conference and computers in engineering conference, Irvine, CA.

    Google Scholar 

  • Pamecha, A., Ebert-Uphoff, I., & Chirikjian, G. (1997). A useful metric for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13(4), 531–545.

    Article  Google Scholar 

  • Park, M., Chitta, S., Teichman, A., & Yim, M. (2008). Automatic configuration methods in modular robots. International Journal of Robotics Research, 27(3–4), 403–421.

    Google Scholar 

  • Parker, C., Zhang, H., & Kube, R. (2003). Blind bulldozing: multiple robot nest construction. In IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, Nevada, USA (pp. 2010–2015).

    Google Scholar 

  • Phillips, J., & Agarwal, P. (2006). On bipartite matching under the rms distance. In 18th Canadian conference on computational geometry, Kingston, Ontario.

    Google Scholar 

  • Ripin, Z., Soon, T., Abdullah, A., & Samad, Z. (2000). Development of a low-cost modular pole climbing robot. In TENCON 2000. Proceedings, Kula Lumpur, Malaysia (Vol. 1, pp. 196–200).

    Google Scholar 

  • Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots, 10(1), 107–124.

    Article  MATH  Google Scholar 

  • Salemi, B., Moll, M., & Shen, W. M. (2006). SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 3636–3641).

    Chapter  Google Scholar 

  • Schultz, U., Christensen, D., & Stoy, K. (2007). A domain-specific language for programming self-reconfigurable robots. In GPCE’07 workshop on automatic program generation for embedded systems, Salzburg, Austria (pp. 28–60).

    Google Scholar 

  • Skaff, S., Staritz, P., & Whittaker, W. (2001). Skyworker: Robotics for space assembly, inspection and maintenance. In Proceedings of the thirteenth space studies institute conference on space manufacturing (pp. 104–108).

    Google Scholar 

  • Sproewitz, A., Billard, A., Dillenbourg, P., & Ijspeert, A. J. (2009). Roombots-Mechanical design of Self-Reconfiguring modular robots for adaptive furniture. In 2009 IEEE international conference on robotics and automation, Kobe, Japan (pp. 4259–4264).

    Chapter  Google Scholar 

  • Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., & Robinson, M. (2005). Behavior-based multi-robot collaboration for autonomous construction tasks. In IEEE/RSJ international conference on intelligent robots and systems, Alberta, Canada (pp. 1495–1500).

    Chapter  Google Scholar 

  • Unsal, C., Kiliccote, H., & Khosla, P. (2001). A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Autonomous Robots, 10(1), 23–40.

    Article  Google Scholar 

  • Vaidya, P. (1988). Geometry helps in matching. In STOC ’88: proceedings of the twentieth annual ACM symposium on theory of computing, Chicago, IL, United States (pp. 422–425).

    Chapter  Google Scholar 

  • Werfel, J. (2001). Anthills built to order: automating construction with artificial swarms. Master’s thesis, Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

  • Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 3–4(27), 463–479.

    Article  Google Scholar 

  • White, P. J., Thorne, C. E., & Yim, M. (2009). Right Angle Tetrahedron Chain Externally-actuated Testbed (RATCHET): a shape changing system. In International design engineering technical conferences & computers and information in engineering conference, San Diego, CA, USA.

    Google Scholar 

  • Williams, R., & Mayhew, J. (1997). Cartesian control of VGT manipulators applied to DOE hardware. In Proceedings of the fifth national conference on applied mechanisms and robotics, Cincinnati, OH.

    Google Scholar 

  • Yamada, H., & Muto, T. (2007). Construction tele-robotic system with virtual reality (cg presentation of virtual robot and task object using stereo vision system). Control and Intelligent Systems, 35(3), 195–201.

    Article  MATH  Google Scholar 

  • Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirickjian, G. (2007). Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1), 43–52.

    Article  Google Scholar 

  • Yoon, Y. (2006). Modular robots for making and climbing 3-d trusses. Master’s thesis, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

  • Yun, S., & Rus, D. (2007). Optimal distributed planning of multi-robot placement on a 3d truss. In IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 1365–1370).

    Chapter  Google Scholar 

  • Yun, S., & Rus, D. (2008). Self assembly of modular manipulators with active and passive modules. In Proc. of IEEE/RSJ IEEE international conference on robotics and automation, Pasadena, CA (pp. 1477–1482) (to appear).

    Google Scholar 

  • Yun, S., Hjelle, D., Lipson, H., & Rus, D. (2009). Planning the reconfiguration of grounded truss structures with truss climbing robots that carry truss elements. In IEEE/RSJ IEEE international conference on robotics and automation, Kobe, Japan (pp. 1327–1333).

    Google Scholar 

  • Zhao, D., Xia, Y., Yamada, H., & Muto, T. (2003). Control method for realistic motions in a construction tele-robotic system with a 3-dof parallel mechanism. Journal of Robotics and Mechatronics, 15(4), 361–368.

    Google Scholar 

  • Zykov, V., Mytilinaios, E., Desnoyer, M., & Lipson, H. (2007). Evolved and designed self-reproducing modular robotics. IEEE Transactions on Robotics, 23(2), 308–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-kook Yun.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 5.58 MB)

(WMV 1.02 MB)

(MP4 7.94 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, Sk., Rus, D. Optimal self assembly of modular manipulators with active and passive modules. Auton Robot 31, 183–207 (2011). https://doi.org/10.1007/s10514-011-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9236-1

Keywords

Navigation