Optimal self assembly of modular manipulators with active and passive modules

Abstract

In this paper, we develop self-assembling robot systems composed of active modular robots and passive bars. The target structure is modeled as a dynamic graph. We present two provably correct algorithms for creating the structure. A decentralized optimal algorithm for the navigation of multiple modular robots on a partial truss structure is used to guide the robots to their location on the target structure. A decentralized algorithm for scheduling the transportation and placement of truss elements is used to coordinate the creation of the target structure. Both algorithms rely on locally optimal matching. The truss self-assembly algorithm has quadratic competitive ratio for static as well as dynamic graph representation. We show simulation results and results for experiments with two 3DOF robots and passive bars that can create and control a 6DOF manipulation.

This is a preview of subscription content, access via your institution.

References

  1. Almonacid, M., Saltarén, R. J., Aracil, R., & Reinoso, O. (2003). Motion planning of a climbing parallel robot. IEEE Transactions on Robotics and Automation, 19(3), 485–489.

    Article  Google Scholar 

  2. Amano, H., Osuka, K., & Tarn, T. J. (2001). Development of vertically moving robot with gripping handrails for fire fighting. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, Maui, HI, USA (pp. 661–667).

    Google Scholar 

  3. Asadpour, M., Ashtiani, M., Sproewitz, A., & Ijspeert, A. (2009). Graph signature for self-reconfiguration planning of modules with symmetry. In IEEE/RSJ international conference on intelligent robots and systems, St. Louis, USA (pp. 5295–5300).

    Google Scholar 

  4. Ayanian, N., White, P., Halasz, A., Yim, M., & Kumar, V. (2008). Stochastic control for self-assembly of xbots. In Proceedings of ASME international design engineering technical conferences & computers and information in engineering conference, New York, NY, USA.

    Google Scholar 

  5. Butler, Z., & Rus, D. (2003). Distributed planning and control for modular robots with unit-compressible modules. The International Journal of Robotics Research, 22(9), 699–715.

    Article  Google Scholar 

  6. Castano, A., Shen, W., & Will, P. (2000). CONRO: towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8(3), 309–324.

    Article  Google Scholar 

  7. Chiang, C. J., & Chirikjian, G. (2001). Modular robot motion planning using similarity metrics. Autonomous Robots, 10(1), 91–106.

    MATH  Article  Google Scholar 

  8. Chirikjian, G., Pamecha, A., & Ebert-Uphoff, I. (1996). Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems, 13(5), 717–338.

    Article  Google Scholar 

  9. Choi, H., Han, C., Lee, K., & Lee, S. (2005). Development of hybrid robot for construction works with pneumatic actuator. Automation in Construction, 14(4), 452–459.

    Article  Google Scholar 

  10. Christensen, A.L., O’Grady, R., & Dorigo, M. (2008). Morphology control in a multirobot system. IEEE Robotics & Automation Magazine, 14(4), 18–25.

    Article  Google Scholar 

  11. Detweiler, C., Vona, M., Yoon, Y., Yun, S., & Rus, D. (2007). Self-assembling mobile linkages. IEEE Robotics & Automation Magazine, 14(4), 45–55.

    Article  Google Scholar 

  12. Duff, D., Yim, M., & Roufas, K. (2001). Evolution of polybot: a modular reconfigurable robot. In Proceedings of the harmonic drive international symposium, Nagano, Japan.

    Google Scholar 

  13. Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2), 248–264.

    MATH  Article  Google Scholar 

  14. Fahlman, S. (1973). A planning system for robot construction tasks (Tech. rep.). Massachusetts Institute of Technology, Cambridge, MA, USA.

  15. Fichter, E. (1986). A Stewart-platform based manipulator: general theory and practical construction. The International Journal of Robotics Research, 5(2), 157–182.

    Article  Google Scholar 

  16. Gilbin, K., & Rus, D. (2010). Modular robot systems. IEEE Robotics & Automation Magazine, 17, 38–55.

    Article  Google Scholar 

  17. Hamacher, H., & Tjandra, S. (2001). Mathematical modeling of evacuation problems: state of the art. Pedestrian and evacuation dynamics (Tech. rep.). Institut Techno- und Wirtschaftsmathematik.

  18. Hamlin, G., & Sanderson, A. (1997). Tetrobot: a modular approach to parallel robotics. IEEE Robotics & Automation Magazine, 4(1), 42–50.

    Article  Google Scholar 

  19. Hou, F., Ranasinghe, N., Salemi, B., & Shen, W. M. (2008). Wheeled locomotion for payload carrying with modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 1331–1337).

    Google Scholar 

  20. Jorgensen, M., Ostergaard, E., & Lund, H. (2004). Modular atron: Modules for a self-reconfigurable robot. In IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan (pp. 2068–2073).

    Google Scholar 

  21. Kalayanasundaram, B., & Pruhs, K. (1993). Online weighted matching. Journal of Algorithms, 14(3), 478–488.

    MathSciNet  Article  Google Scholar 

  22. Kalyanasundaram, B., & Pruhs, K. (1995). The online transportation problem. In ESA ’95: proceedings of the third Annual European Symposium on Algorithms (pp. 484–493). London: Springer.

    Google Scholar 

  23. Kasper Støy (2005). The ATRON self-reconfigurable robot: challenges and future directions. In Workshop on self-reconfigurable robotics at the robotics science and systems conference.

    Google Scholar 

  24. Khuller, S., Mitchell, S., & Vazirani, V (1994). On-line algorithms for weighted bipartite matching and stable marriages. Theory and Computational Science, 127(2), 255–267.

    MathSciNet  MATH  Article  Google Scholar 

  25. Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962.

    MathSciNet  Article  Google Scholar 

  26. Kotay, K., & Rus, D. (2005). Efficient locomotion gait for a self-reconfiguring robot. In Proceedings of the IEEE international conference on robotics and automation, Barcelona, Spain (pp. 2963–2969).

    Google Scholar 

  27. Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic molecule. In IEEE International Conference on Robotics and Automation, Leuven, Belgium (pp. 424–431).

    Google Scholar 

  28. Kotay, K. D., & Rus, D. L. (1996). Navigating 3d steel web structures with an inchworm robot. In Proceedings of the IEEE international conference on intelligent robots and systems.

    Google Scholar 

  29. Kuhn, H. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97.

    MathSciNet  Article  Google Scholar 

  30. Kutzer, M., Moses, M., Brown, C., Armand, M., Scheidt, D., & Chirikjian, G. (2010). Design of a new independently-mobile reconfigurable modular robot. In International conference on robotics and automation, Anchorage, Alaska, USA (pp. 2758–2764).

    Google Scholar 

  31. Lee, S., Lee, K., Lee, S., Kim, J., & Han, C. (2007). Human-robot cooperation control for installing heavy construction materials. Autonomous Robots, 22(3), 305–319.

    MATH  Article  Google Scholar 

  32. Lyder, A., Garcia, R., & Støy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 883–888).

    Google Scholar 

  33. Matthey, L., Berman, S., & Kumar, V. (2009). Stochastic strategies for a swarm robotic assembly system. In Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1953–1958). New York: IEEE Press.

    Google Scholar 

  34. Meyerson, A., Nanavati, A., & Poplawski, L. (2006). Randomized online algorithms for minimum metric bipartite matching. In ACM-SIAM symposium on discrete algorithms, Miami, Florida, USA (pp. 954–959).

    Google Scholar 

  35. Moses, M., Yamaguchi, H., & Chirikjian, G. (2009). Towards cyclic fabrication systems for modular robotics. In Proceedings of robotics: science and systems, Seattle, USA.

    Google Scholar 

  36. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-d self-reconfigurable structure. In Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium (pp. 432–439).

    Google Scholar 

  37. Murata, S., Kakomura, K., & Kurokawa, H. (2008). Toward a scalable modular robotic system. IEEE Robotics & Automation Magazine, 14(4), 56–63.

    Article  Google Scholar 

  38. Nechyba, M., & Xu, Y. (1995). Human-robot cooperation in space: SM2 for new space station structure. IEEE Robotics & Automation Magazine, 2(4), 4–11.

    Article  Google Scholar 

  39. Pamecha, A., Chiang, C., Stein, D., & Chirikjian, G. (1996). Design and implementation of metamorphic robots. In The 1996 ASME design engineering technical conference and computers in engineering conference, Irvine, CA.

    Google Scholar 

  40. Pamecha, A., Ebert-Uphoff, I., & Chirikjian, G. (1997). A useful metric for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13(4), 531–545.

    Article  Google Scholar 

  41. Park, M., Chitta, S., Teichman, A., & Yim, M. (2008). Automatic configuration methods in modular robots. International Journal of Robotics Research, 27(3–4), 403–421.

    Google Scholar 

  42. Parker, C., Zhang, H., & Kube, R. (2003). Blind bulldozing: multiple robot nest construction. In IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, Nevada, USA (pp. 2010–2015).

    Google Scholar 

  43. Phillips, J., & Agarwal, P. (2006). On bipartite matching under the rms distance. In 18th Canadian conference on computational geometry, Kingston, Ontario.

    Google Scholar 

  44. Ripin, Z., Soon, T., Abdullah, A., & Samad, Z. (2000). Development of a low-cost modular pole climbing robot. In TENCON 2000. Proceedings, Kula Lumpur, Malaysia (Vol. 1, pp. 196–200).

    Google Scholar 

  45. Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots, 10(1), 107–124.

    MATH  Article  Google Scholar 

  46. Salemi, B., Moll, M., & Shen, W. M. (2006). SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 3636–3641).

    Google Scholar 

  47. Schultz, U., Christensen, D., & Stoy, K. (2007). A domain-specific language for programming self-reconfigurable robots. In GPCE’07 workshop on automatic program generation for embedded systems, Salzburg, Austria (pp. 28–60).

    Google Scholar 

  48. Skaff, S., Staritz, P., & Whittaker, W. (2001). Skyworker: Robotics for space assembly, inspection and maintenance. In Proceedings of the thirteenth space studies institute conference on space manufacturing (pp. 104–108).

    Google Scholar 

  49. Sproewitz, A., Billard, A., Dillenbourg, P., & Ijspeert, A. J. (2009). Roombots-Mechanical design of Self-Reconfiguring modular robots for adaptive furniture. In 2009 IEEE international conference on robotics and automation, Kobe, Japan (pp. 4259–4264).

    Google Scholar 

  50. Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., & Robinson, M. (2005). Behavior-based multi-robot collaboration for autonomous construction tasks. In IEEE/RSJ international conference on intelligent robots and systems, Alberta, Canada (pp. 1495–1500).

    Google Scholar 

  51. Unsal, C., Kiliccote, H., & Khosla, P. (2001). A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Autonomous Robots, 10(1), 23–40.

    Article  Google Scholar 

  52. Vaidya, P. (1988). Geometry helps in matching. In STOC ’88: proceedings of the twentieth annual ACM symposium on theory of computing, Chicago, IL, United States (pp. 422–425).

    Google Scholar 

  53. Werfel, J. (2001). Anthills built to order: automating construction with artificial swarms. Master’s thesis, Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

  54. Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 3–4(27), 463–479.

    Article  Google Scholar 

  55. White, P. J., Thorne, C. E., & Yim, M. (2009). Right Angle Tetrahedron Chain Externally-actuated Testbed (RATCHET): a shape changing system. In International design engineering technical conferences & computers and information in engineering conference, San Diego, CA, USA.

    Google Scholar 

  56. Williams, R., & Mayhew, J. (1997). Cartesian control of VGT manipulators applied to DOE hardware. In Proceedings of the fifth national conference on applied mechanisms and robotics, Cincinnati, OH.

    Google Scholar 

  57. Yamada, H., & Muto, T. (2007). Construction tele-robotic system with virtual reality (cg presentation of virtual robot and task object using stereo vision system). Control and Intelligent Systems, 35(3), 195–201.

    MATH  Article  Google Scholar 

  58. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirickjian, G. (2007). Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1), 43–52.

    Article  Google Scholar 

  59. Yoon, Y. (2006). Modular robots for making and climbing 3-d trusses. Master’s thesis, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

  60. Yun, S., & Rus, D. (2007). Optimal distributed planning of multi-robot placement on a 3d truss. In IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 1365–1370).

    Google Scholar 

  61. Yun, S., & Rus, D. (2008). Self assembly of modular manipulators with active and passive modules. In Proc. of IEEE/RSJ IEEE international conference on robotics and automation, Pasadena, CA (pp. 1477–1482) (to appear).

    Google Scholar 

  62. Yun, S., Hjelle, D., Lipson, H., & Rus, D. (2009). Planning the reconfiguration of grounded truss structures with truss climbing robots that carry truss elements. In IEEE/RSJ IEEE international conference on robotics and automation, Kobe, Japan (pp. 1327–1333).

    Google Scholar 

  63. Zhao, D., Xia, Y., Yamada, H., & Muto, T. (2003). Control method for realistic motions in a construction tele-robotic system with a 3-dof parallel mechanism. Journal of Robotics and Mechatronics, 15(4), 361–368.

    Google Scholar 

  64. Zykov, V., Mytilinaios, E., Desnoyer, M., & Lipson, H. (2007). Evolved and designed self-reproducing modular robotics. IEEE Transactions on Robotics, 23(2), 308–319.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung-kook Yun.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 5.58 MB)

(WMV 1.02 MB)

(MP4 7.94 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yun, Sk., Rus, D. Optimal self assembly of modular manipulators with active and passive modules. Auton Robot 31, 183 (2011). https://doi.org/10.1007/s10514-011-9236-1

Download citation

Keywords

  • Self assembly
  • Modular robot
  • Distributed algorithm
  • Bipartite matching
  • Truss climbing robot
  • Smart part