Skip to main content
Log in

Degenerate Problems of Designing the Control System of a Linear Discrete Plant

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Consideration was given to the class of degenerate problems of designing controller for a multidimensional discrete-time linear plant under stationary perturbations. An algorithm to design an iteratively structured controller providing the desired control performance in the steady-state conditions was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal'nye sistemy upravleniya, Moscow: Mir, 1977.

    Google Scholar 

  2. Fomin, V.N., Metody upravleniya lineinymi diskretnymi ob”ektami (Methods of Control of Discrete Linear Plants), Leningrad: Leningrad. Gos. Univ., 1985.

    Google Scholar 

  3. Kolosov, G.E., Sintez optimal'nykh stokhasticheskikh sistem pri sluchainykh vozmushcheniyakh (Design of Optimal Stochastic Systems under Random Perturbations), Moscow: Nauka, 1984.

    Google Scholar 

  4. Kazarinov, Yu.F. and Fomin, V.N., Linear-quadratic Problem of Stochastic Control. III. Nonlinear Optimal Controllers, Avtom. Telemekh., 1993, no. 5, pp. 94–99.

  5. Shchipanov G.V. i teoriya invariantnosti (Shchipanov G.V. and the Invariance Theory), Moscow: Fizmatlit, 2004.

  6. Perov, A.I., Discrete Matrix Lur'e Equation (Singular Case), Avtom. Telemekh., 2003, no. 3, pp. 46–57.

  7. Bunich, A.L., A Method of Successive Improvement in the Design of the Controller of a Linear Discrete Plant, Avtom. Telemekh., 2004, no. 4, pp. 48–55.

  8. Rozanov, Yu.M., Statsionarnye sluchainye protsessy (Stationary Random Processes), Moscow: Nauka, 1990.

    Google Scholar 

  9. Kulebakin, V.S., Theory of Invariance of the Automatically Regulated and Controlled Systems, Proc. I IFAC Cong. on Automatic Control, Moscow: Akad. Nauk SSSR, 1960, vol. 1, pp. 247–255.

    Google Scholar 

  10. Tsypkin, Ya.Z., Moving Approximation and the Principle of Absorption, Dokl. Ross. Akad. Nauk, 1997, vol. 357, no.6, pp. 750–752.

    MATH  MathSciNet  Google Scholar 

  11. Hannan, E.J., Multiple Time Series, New York: Wiley, 1970. Translated under the title Mnogomernye vremennye ryady, Moscow: Mir, 1974.

    Google Scholar 

  12. Box, G.E.P. and Jenkins, G.M., Time Series Analysis—Forecasting and Control, San Francisco: Holden-Day, 1970. Translated under the title Analiz vremennykh ryadov. Prognoz i upravlenie, Moscow: Mir, 1974.

    Google Scholar 

  13. Lii, K.H. and Rosenblatt, M., Estimation and Deconvolution when the Transfer Function Has Zeros, J. Theor. Probab., 1988, vol. 1, no.1, pp. 93–113.

    Article  MathSciNet  Google Scholar 

  14. Olevskii, A.M., Representation of Functions by the Exponents with Positive Frequencies, Usp. Mat. Nauk, 2004, vol. 59, no.1 (355), pp. 169–178.

    MathSciNet  Google Scholar 

  15. Rabinovich, M.I. and Trubetskov, D.I., Vvedenie v teoriyu kolebanii i voln (Introduction to the Theory of Oscillations and Waves), Moscow: Nauka, 1984.

    Google Scholar 

  16. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Plants), Moscow: Nauka, 1981.

    Google Scholar 

  17. Youla, D.C., Jabr, H., and Bongiorno, J.J., Modern Wiener-Hopf Design of Optimal Controllers. II. The Multivariable Case, IEEE Trans. Automat. Control, 1976, vol. AC-34, no.3, pp. 319–338.

    MathSciNet  Google Scholar 

  18. Hormander, L., An Introduction to Complex Analysis in Several Variables, Princeton: van Nostrand, 1966. Translated under the title Vvedenie v teoriyu funktsii neskol'kikh kompleksnykh peremennykh, Moscow: Mir, 1968.

    Google Scholar 

  19. Keel, L. and Bhattacharyya, S.P., Robust, Fragile or Optimal? IEEE Trans. Automat. Control, 1997, vol. 42, no.6, pp. 1098–1105.

    MathSciNet  Google Scholar 

  20. Krasovskii, A.A., Historical Overview and State-of-the-Art of the Fundamental Applied Control Science with an Example of Self-organizing Controllers, in Plenary Papers of Int. Conf. Control Problems, Moscow: Inst. Probl. Upravlen., 1999, pp. 4–23.

    Google Scholar 

  21. Teoriya avtomaticheskogo regulirovaniya (Automatic Control Theory), Shatalov, A.S., Ed., Moscow: Vysshaya Shkola, 1977.

    Google Scholar 

  22. Emel'yanov, S.V. and Korovin, S.K., Novye tipy obratnoi svyazi (New Types of Feedbacks), Moscow: Nauka, 1997.

    Google Scholar 

  23. Zames, G., Feedback and Optimal Sensivity: Model Reference Transformation, Multiplicative Seminorms and Approximate Inverses, IEEE Trans. Automat. Control, 1981, vol. AC-26, no.2, pp. 301–320.

    MathSciNet  Google Scholar 

  24. Marin, C., Metody Przestazeni Hilberta, Warsaw: PWN, 1959. Translated under the title Metody gil'bertova prostranstva, Moscow: Mir, 1965.

    Google Scholar 

  25. Nikol'skii, N.K., Lektsii ob operatore sdviga (Lectures on Shift Operator), Moscow: Nauka, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Avtomatika i Telemekhanika, No. 11, 2005, pp. 35–45.

Original Russian Text Copyright © 2005 by Bunich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunich, A.L. Degenerate Problems of Designing the Control System of a Linear Discrete Plant. Autom Remote Control 66, 1733–1742 (2005). https://doi.org/10.1007/s10513-005-0208-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10513-005-0208-9

Keywords

Navigation