Skip to main content
Log in

Hard Problems in Linear Control Theory: Possible Approaches to Solution

  • Reviews
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A number of challenging problems in linear control theory are considered which admit simple formulation and yet lack efficient solution methods. These problems relate to the classical theory of linear systems as well as to the robust theory where the system description contains uncertainty. Various solution methods are discussed and the results of numerical simulations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Spravochnik po teorii avtomaticheskogo upravleniya (Handbook in Automatic Control Theory), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  2. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (A Course in Automatic Control Theory), Moscow: Nauka, 1986.

    Google Scholar 

  3. Besekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (The Theory of Automatic Regulation Systems), Moscow: Nauka, 1966.

    Google Scholar 

  4. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  5. Bernstein, D.S., Some Open Problems in Matrix Theory Arising in Linear Systems and Control, Linear Algebra Appl., 1992, no. 162–164, pp. 409–432.

  6. Blondel, V. and Tsitsiklis, J.N., NP-hardness of Some Linear Control Design Problems, SIAM J. Control Optimiz., 1997, vol. 35, no.6. pp. 2118–2127.

    Google Scholar 

  7. Blondel, V., Sontag, E., Vidyasagar, M., and Willems, J., Open Problems in Mathematical Systems and Control Theory, London: Springer, 1999.

    Google Scholar 

  8. Nemirovskii, A.A., Several NP-hard Problems Arising in Robust Stability Analysis, Math. Control Sig. Syst., 1994, vol. 6, pp. 99–105.

    Google Scholar 

  9. Aizerman, M.A., On Some Structural Conditions of Stability of Automatic Regulation Systems, Avtom. Telemekh., 1948, no. 11.

  10. Aizerman, M.A. and Gantmakher, F.R., Conditions of Existence of a Stability Domain for One-Loop Automatic Regulation System, Prikl. Mat. Mekh., 1954, vol. XVIII, no.1.

  11. Padmanabhan, P. and Hollot, C.V., Complete Instability of a Box of Polynomials, IEEE Trans. Automat. Control, 1992, vol. 37, no.8, pp. 1230–1233.

    Google Scholar 

  12. Nemirovskii, A.S. and Polyak, B.T., Necessary Conditions for Stability of Polynomials and Their Applications, Avtom. Telemekh., 1994, no. 11, pp. 113–119.

  13. Pujara, L.R., Some Necessary and Sufficient Conditions for Low-Order Interval Polytopes to Contain a Hurwitz Polynomial, Proc. Conf. Decision Control, Phoenix, USA, 1999, pp. 5024–5029.

  14. Moses, R.L. and Liu, D., Determining the Closest Stable Polynomial to an Unstable One, IEEE Trans. Automat. Control, 1991, vol. 39, no.4, pp. 901–907.

    Google Scholar 

  15. Syrmos, V.L., Abdallah, C.T., Dorato, P., and Grigoriadis, K., Static Output Feedback: A Survey, Automatica, 1997, vol. 33, no.2, pp. 125–137.

    Google Scholar 

  16. Garcia, G., Pradin, B., Tarbouriech, S., and Zeng, F., Robust Stabilization and Guaranteed Cost Control for Discrete-Time Linear Systems by Static Output Feedback, Automatica, 2003, vol. 39, pp. 1635–1641.

    Google Scholar 

  17. Kimura, H., Pole Assignment by Gain Output Feedback, IEEE Trans. Automat. Control, 1975, vol. 20, pp. 509–516.

    Google Scholar 

  18. Davison, E.J. and Wang, S.H., On Pole Assignment in Linear Multivariable Systems Using Output Feedback, IEEE Trans. Automat. Control, 1975, vol. 20, pp. 516–518.

    Google Scholar 

  19. Brockett, R. and Byrnes, C., Multivariable Nyquist Criteria, Root Loci and Pole Placement: A Geometric Viewpoint, IEEE Trans. Automat. Control, 1981, vol. 26, pp. 271–284.

    Google Scholar 

  20. Byrnes, C.I. and Anderson, B.D.O., Output Feedback and Generic Stabilizability, SIAM J. Control Optimiz., 1984, vol. 22, pp. 362–380.

    Google Scholar 

  21. Byrnes, C., Pole Assignment by Output Feedback, in Three Decades of Mathematical System Theory, Lect. Notes Control Inf. Sci., 1989, vol. 135, pp. 31–78.

    Google Scholar 

  22. Eremenko, A. and Gabrielov, A., Pole Placement by Static Output Feedback for Generic Linear Systems, SIAM J. Control Optimiz., 2002, vol. 41, no.1, pp. 303–312.

    Google Scholar 

  23. Boyd, S.L., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.

    Google Scholar 

  24. Kharitonov, V.L., Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations, Diff. Uravn., 1979, vol. 14, no.11, pp. 1483–1485.

    Google Scholar 

  25. Tsypkin, Ya.Z. and Polyak, B.T., Frequency Domain Criteria for ℓp-robust Stability of Continuous Linear Systems, IEEE Trans. Automat. Control, 1991, vol. 36, no.12, pp. 1464–1469.

    Google Scholar 

  26. Bartlett, A.C., Hollot, C. V., and Lin, H., Root Location of an Entire Polytope of Polynomials: It Suffices to Check the Edges, Mat. Control Sig. Syst., 1988, vol. 1, pp. 61–71.

    Google Scholar 

  27. Barmish, B.R., New Tools for Robustness of Linear Systems, New York: Macmillan, 1994.

    Google Scholar 

  28. Ackermann, J., Robust Control. The Parameter Space Approach, London: Springer, 2002.

    Google Scholar 

  29. Bhattacharyya, S.P., Chapellat, H., and Keel, L., Robust Control: The Parametric Approach, Upper Saddle River: Prentice Hall, 1995.

    Google Scholar 

  30. Hinrichsen, D. and Pritchard A., Stability Radius for Structured Perturbations and the Algebraic Riccati Equation, Syst. Control Lett., 1986, no. 8, pp. 105–113.

  31. Qiu, L., Bernhardsson, B., Rantzer A., et al., A Formula for Computation of the Real Stability Radius, Automatica, 1995, vol. 31, no.6, pp. 879–890.

    Google Scholar 

  32. Zadeh, L.A. and Desoer, C.A., Linear System Theory. The State Space Approach, New York: McGraw-Hill, 1963. Translated under the title Teoriya lineinykh sistem, Moscow: Nauka, 1970.

    Google Scholar 

  33. Kats, A.M., Finding the Parameters of a Regulator from the Desired Characteristic Equation of a Regulation System, Avtom. Telemekh., 1955, no. 3, pp. 269–272.

  34. Volgin, L.N., Elementy teorii upravlyayushchikh mashin (Elemens of the Theory of Governors), Moscow: Sovetskoe Radio, 1962.

    Google Scholar 

  35. Larin, V.M., Naumenko, K.I., and Suntsev, V.N., Spektral’nye metody sinteza lineinykh sistem s obratnoi svyaz’yu (Spectral Methods for Linear Feedback System Design), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  36. Bongiorno, J.J. and Youla, D.C., On the Design of Single-Loop Single-Input-Output Feedback Control Systems in the Complex Frequency Domain, IEEE Trans. Automat. Control, 1977, vol. 22, no.3, pp. 416–423.

    Google Scholar 

  37. Vidyasagar, M., Control System Synthesis: A Factorization Approach, Boston: MIT Press, 1985.

    Google Scholar 

  38. Blondel, V., Simultaneous Stabilization of Linear Systems, London: Springer, 1995.

    Google Scholar 

  39. Osnovy avtomaticheskogo regulirovaniya (Foundations of Automatic Regulation Theory), Solodovnikov, V.V., Ed., Moscow: Mashgiz, 1954.

    Google Scholar 

  40. Dahleh, M. and Pearson, J., l 1-optimal Controllers for MIMO Discrete-Time Systems, IEEE Trans. Automat. Control, 1987, vol. 3, pp. 314–322.

    Google Scholar 

  41. Dahleh, M. and Diaz-Bobillo, I., Control of Uncertain Systems: A Linear Programming Approach, Englewood Cliffs: Prentice Hall, 1995.

    Google Scholar 

  42. Barabanov, A.E., Sintez minimaksnykh regulyatorov (Design of Minimax Regulators), St. Petersburg: S.-Peterburg. Gos. Univ., 1996.

    Google Scholar 

  43. Evans, W.R., Control System Dynamics, New York: McGraw-Hill, 1954.

    Google Scholar 

  44. Uderman, E.G., Metod kornevogo godografa v teorii avtomaticheskogo upravleniya (The Root Locus Method in Automatic Control Theory), Leningrad: Gostekhizdat, 1963.

    Google Scholar 

  45. Maxwell, J.C., Vyshnegradskii, I.A., and Stodola, A., Teoriya avtomaticheskogo regulirovaniya (Automatic Regulation Theory), Moscow: Akad. Nauk SSSR, 1949.

    Google Scholar 

  46. Neimark, Yu.I., Ustoichivost’ linearizovannykh sistem (Stability of Linearized Systems), Leningrad: LKVVIA, 1949.

    Google Scholar 

  47. Siljak, D.D., Nonlinear Systems, New York: Wiley. 1969.

    Google Scholar 

  48. Datta, A., Ho, M.T., and Bhattacharyya, S.P., Structure and Synthesis of PID Controllers, London: Springer-Verlag, 2000.

    Google Scholar 

  49. Nikolaev, Yu.P., The Set of Stable Polynomials of Linear Discrete Systems: Its Geometry, Avtom. Telemekh., 2002, no. 7, pp. 44–53.

  50. Gryazina, E.N., The D-Decomposition Theory, Avtom. Telemekh., 2004, no. 12, pp. 15–28.

  51. Petrov, N.P. and Polyak, B.T., Robust D-Decomposition, Avtom. Telemekh., 1991, no. 11, pp. 41–53.

  52. Frazer, R.A. and Duncan, W.J., On the Criteria for the Stability of Small Motion, Proc. Roy. Soc., Ser. A, 1929, vol. 124, pp. 642–654.

    Google Scholar 

  53. Polyak, B.T. and Tsypkin, Ya.Z., Frequency-Domain Criteria for Robust Stability and Aperiodicity of Linear Systems, Avtom. Telemekh., 1990, no. 9, pp. 45–54.

  54. Barmish, B.R., Corless, M., and Leitmann, G., A New Class of Stabilizing Controllers for Uncertain Dynamical Systems, SIAM J. Control Optimiz., 1983, vol. 21, no.2, pp. 246–255.

    Google Scholar 

  55. Calafiore, G. and Polyak, B.T., Stochastic Algorithms for Exact and Approximate Feasibility of Robust LMIs, IEEE Trans. Automat. Control, 2001, vol. 46, no.11, pp. 1755–1759.

    Google Scholar 

  56. Liberzon, D. and Tempo, R., Common Lyapunov Functions and Gradient Algorithms, IEEE Trans. Automat. Control, 2004, vol. 49, no.6, pp. 990–994.

    Google Scholar 

  57. Meilakhs, A.M., On the Stabilization of Linear Control Systems in the Presence of Uncertainty, Avtom. Telemekh., 1975, no. 2, pp. 182–184.

  58. Petersen, I.R. and Hollot, C.V., A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems, Automatica, 1986, vol. 22, pp. 397–411.

    Google Scholar 

  59. Petersen, I.R. and McFarlane, D.C., Optimal Guaranteed Cost Control and Filtering for Uncertain Linear Systems, IEEE Trans. Automat. Control, 1994, vol. 39, pp. 1971–1977.

    Google Scholar 

  60. Polyak, B.T. and Tempo, R., Probabilistic Robust Design with Linear Quadratic Regulators, Syst. Control Lett., 2001, vol. 43, pp. 343–353.

    Google Scholar 

  61. Polyak, B. and Halpern, M., Optimal Design for Discrete-Time Linear Systems via New Performance Index, Int. J. Adaptive Control Sig. Proc., 2001, vol. 15, no.2, pp. 129–152.

    Google Scholar 

  62. Lozinskii, S.M., Estimating the Errors of the Approximate Solution of Systems of Ordinary Differential Equations, Dokl. Akad. Nauk SSSR, 1953, vol. 92, no.2, pp. 225–228.

    Google Scholar 

  63. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. I. Analysis, Avtom. Telemekh., 2002, no. 8, pp. 37–53.

  64. Rosenbrock, H.H., Computer-Aided Control System Design, London: Academic, 1974.

    Google Scholar 

  65. Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya. Avtomaticheskoe regulirovanie nepreryvnykh lineinykh sistem (Foundations of Automatic Control Theory. Automatic Regulation of Continuous-Time Linear Systems), Moscow: Energiya, 1980.

    Google Scholar 

  66. Ogata, K., Modern Control Engineering, Englewood Cliffs: Prentice Hall, 1990.

    Google Scholar 

  67. Kaszkurevich, E. and Bhaya, A., Matrix Diagonal Stability in Systems and Computation, Boston: Birkhauser, 2000.

    Google Scholar 

  68. Blanchini, F. and Sznaier, M., A Convex Optimization Approach for Fixed-Order Controller Design for Disturbance Rejection in SISO Systems, IEEE Trans. Automat. Control, 2000, vol. 45, pp. 784–789.

    MathSciNet  Google Scholar 

  69. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. II. Design, Avtom. Telemekh., 2002, no. 11, pp. 56–75.

  70. Polyak, B.T., Extended Superstability in Control Theory, Avtom. Telemekh., 2004, no. 4, pp. 70–80.

  71. Polyak, B.T. and Shcherbakov P.S., A New Approach to Robustness and Stabilization of Control Systems via Perturbation Theory, Proc. 14th World Congress of IFAC, Beijing, 1999, vol. C, pp. 13–18.

    Google Scholar 

  72. Polyak, B.T. and Shcherbakov, P.S., Numerical Search of Stable or Unstable Element in Matrix or Polynomial Families: A Unified Approach to Robustness Analysis and Stabilization, in Robustness in Identification and Control, Lect. Notes Control Inf. Sci., 1999, vol. 245, pp. 344–358.

    Google Scholar 

  73. Horn, R. and Johnson, C., Matrix Analysis, New York: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Google Scholar 

  74. Anderson, B.D.O., Bose, N.K., and Jury, E.I., Output Feedback Stabilization and Related Problems—Solution via Decision Methods, IEEE Trans. Automat. Control, 1975, vol. 20, no.1, pp. 53–66.

    Google Scholar 

  75. Polak, E. and Wardi, Y., Nondifferentiable Optimization Algorithm for Designing Control Systems Having Singular Value Inequalities, IEEE Trans. Automat. Control, 1982, vol. 18, no.3, pp. 267–283.

    Google Scholar 

  76. Malan, S., Milanese, M., and Taragna, M., Robust Analysis and Design of Control Systems Using Interval Arithmetic, Automatica, 1997, vol. 33, no.7, pp. 1363–1372.

    Google Scholar 

  77. Bobylev, N.A., Emelyanov, S.V., and Korovin, S.K., Estimates of Perturbations of Stable Matrices, Avtom. Telemekh., 1998, no. 4, pp. 15–24.

  78. Kiselev, O.N. and Polyak, B.T., Low-Order Controller Design via the H Criterion and the Criterion of Maximal Robustness, Avtom. Telemekh., 1999, no. 3, pp. 119–130.

  79. Francis, B., A Coursein H Control Theory, Berlin: Springer, 1987.

    Google Scholar 

  80. Keel, L.H. and Bhattacharyya, S.P., Robust Stability and Performance with Fixed-Order Controllers, Automatica, 1999, vol. 35, no.10, pp. 1717–1724.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Avtomatika i Telemekhanika, No. 5, 2005, pp. 7–46.

Original Russian Text Copyright © 2005 by Polyak, Shcherbakov.

This work was supported by the Russian Foundation for Basic Research, project no. 02-01-00127 and the Presidium of the Russian Academy of Sciences, Complex Programme no. 3.2.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyak, B.T., Shcherbakov, P.S. Hard Problems in Linear Control Theory: Possible Approaches to Solution. Autom Remote Control 66, 681–718 (2005). https://doi.org/10.1007/s10513-005-0115-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10513-005-0115-0

Keywords

Navigation