Dynamics of Electric Current’s Parameters in Active Regions on the Sun and Their Relation to the Flare Index

Data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) on the components of the magnetic field vector in the photosphere for 39 active regions (AR) of the 24th solar activity cycle are used to calculate the parameters of the electric current. The time variations in the electric current parameters in the AR over the time the region is within ±35° of the central meridian are studied. An attempt is made to relate the parameters of the current in the photosphere and their dynamics to the level of flare activity of the region. These studies have yielded the following results: (1) The change in the total unsigned current in an AR is synchronous or quasi-synchronous with changes in the magnetic flux; (2) A relation between the total unsigned current and the flare index (FI) exists, but is weak (correlation k = 0.48); (3) The imbalance of the vertical electric currents for all 39 of the AR studied here was low and did not exceed a few percent, which indicates closure of the current structures on all scales within an AR; (4) The highest correlation (k = 0.72) with the flare index is observed for a time averaged absolute value of the density of the vertical electric current; (5) Statistical studies yield a critical level of <|jz|> equal to 2.7 mA/m2: when this level is exceeded in an AR, flares with higher x-ray classes (M and X) are observed and when the current density falls below the threshold value, there is a reduction in the flare productivity of the region; (6) For the example of two regions with an emerging magnetic flux it is shown that pumping magnetic energy into the corona requires some time; the time interval between the jump in <|jz|> and the onset of the development of the first powerful flares in x-ray classes M and X is at least 12-20 hours; (7) The character of the relation between the time variations in the average value of the density of the horizontal current <|j|> and the imbalance in the vertical current ρjz with the level of flare activity of an AR is more complicated and requires separate, more detailed studies.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. B. Severnyi, Izv. Krymsk. Astrofiz. obs. 33, 34 (1965).

    Google Scholar 

  2. 2.

    V. A. Kotov, Izv. Krymsk. Astrofiz. obs. 41-42, 67 (1970).

    ADS  Google Scholar 

  3. 3.

    A. M. Zvereva and A. B. Severnyi, Izv. Krymsk. Astrofiz. obs. 41-42, 97 (1970).

    ADS  Google Scholar 

  4. 4.

    C. J. Schrijver, M. L. De Rosa, T. Metcalf, et al., Astrophys. J. 675, 1637 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    J. X. Wang, Z. Shi, H. Wang, et al., Astrophys J. 456, 861 (1996).

    ADS  Article  Google Scholar 

  6. 6.

    V. I. Abramenko and S. I. Gopasyuk, Izv. Krymsk. Astrofiz. obs. 76, 147 (1987).

    ADS  Google Scholar 

  7. 7.

    V. I. Abramenko, T. Wang, and V. B. Yurchishin, Solar Phys. 168, 75 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity, Oxford University Press, Oxford (1979).

    Google Scholar 

  9. 9.

    E. N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos, 2007, Princeton University Press, Princeton (2007).

    Google Scholar 

  10. 10.

    E. N. Parker, Astrophys. J. 471, 485 (1996).

    ADS  Article  Google Scholar 

  11. 11.

    D. B. Melrose, Astrophys. J. 381, 306 (1991).

    ADS  Article  Google Scholar 

  12. 12.

    Y. Liu, X. Sun, T. Torok, et al., Astrophys. J. 846, L6 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    S. Gosain, P. Demoulin, and M. L. Fuentes, Astrophys. J. 793, 15 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    C. J. Schrijver, M. L. De Rosa, T. R. Metcalf, et al., Astrophys. J. 675, 1637 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    M. K. Georgoulis, V. S. Titov, and Z. Mikic, Astrophys. J. 761, 61 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Yu. A. Fursyak, A. S. Kutsenko, and V. I. Abramenko, Solar Phys. (2019) (in print).

  17. 17.

    B. Ravindra, P. Venkatakrishnan, S. K. Tiwari, et al., Astrophys. J. 740, 19 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    I. Kontogiannis, M. K. Georgoulis, S.-H. Park, et al., Solar Phys. 292, 159 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    D. B. Melrose, Astrophys. J. 451, 391 (1995).

    ADS  Article  Google Scholar 

  20. 20.

    K. D. Leka, R. C. Canfield, A. N. McClymont, et al., Astrophys. J. 462, 547 (1996).

    ADS  Article  Google Scholar 

  21. 21.

    D. W. Longcope and B. T. Welsch, Astrophys. J. 545, 1089 (2000).

    ADS  Article  Google Scholar 

  22. 22.

    P. H. Scherrer, J. Schou, R. I. Bush, et al., Solar Phys. 275, 207 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Solar Phys. 275, 3 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    M. G. Bobra, X. Sun, J. T. Hoeksema, et al., Solar Phys. 289, 3549 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Yu. A. Fursyak and V. I. Abramenko, Astrophysics 60, 544 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    A. V. Zhukova, Izv. Krymsk. Astrofiz. obs. 114, 74 (2018).

    Google Scholar 

  27. 27.

    V. I. Abramenko, S. I. Gopasyuk, and M. B. Ogir’, Izv. Krymsk. Astrofiz. obs. 78, 151 (1988).

  28. 28.

    V. I. Abramenko, S. I. Gopasyuk, and M. B. Ogir’, Solar Phys. 134, 287 (1991).

  29. 29.

    Yu. A. Fursyak, Geomagnetism and Aeronomy 58, 1129 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    A. A. Norton, E. H. Jones, M. G. Linton, et al., Astrophys. J. 842, ??? (2017).

  31. 31.

    V. I. Abramenko, Astrophys. J. 629, 1141 (2005).

    ADS  Article  Google Scholar 

  32. 32.

    Yu. A. Fursyak, Geomagnetism and Aeronomy 56, 930 (2016).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Fursyak.

Additional information

Translated from Astrofizika, Vol. 63, No. 2, pp. 295-309 (May 2020)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fursyak, Y.A., Abramenko, V.I. & Kutsenko, A.S. Dynamics of Electric Current’s Parameters in Active Regions on the Sun and Their Relation to the Flare Index. Astrophysics 63, 260–273 (2020). https://doi.org/10.1007/s10511-020-09631-6

Download citation

Keywords

  • Sun
  • active regions
  • solar flares
  • magnetic fields
  • electric currents