Skip to main content
Log in

Dynamical Behavior of Coupled Magnetized Dark Energy in Lyra's Geometry

  • Published:
Astrophysics Aims and scope

The axially symmetric space-time with magnetized anisotropic generalized ghost pilgrim dark energy has been investigated in Lyra's geometry. To get a determinate solution, we considered that the expansion scalar θ in the model is proportional to shear scalar σ. We found that the equation of state parameter of generalized ghost pilgrim dark energy behaves like a phantom dark energy. By stability analysis, our model was found to be stable. We have studied the correspondence between the models of generalized ghost pilgrim dark energy and polytropic gas dark energy. Accordingly, the potential and dynamics of the scalar field of the polytropic gas is reconstructed. Moreover, we have calculated various physical and kinematical parameters of the model and observed that these are compatible with recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Garnavich et al., Astrophys. J., 493, L53, 1998.

    Article  ADS  Google Scholar 

  2. P. M. Garnavich et al., Astrophys. J., 509, 74, 1998.

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., Astrophys. J., 483, 565, 1997.

    Article  ADS  Google Scholar 

  4. S. Perlmutter et al., Nature, 391, 51, 1998.

    Article  ADS  Google Scholar 

  5. S. Perlmutter et al., Astrophys. J., 517, 5, 1999.

    Article  Google Scholar 

  6. A. G. Riess et al., Astron. J., 116, 1009, 1998.

    Article  ADS  Google Scholar 

  7. B. P. Schmidt et al., Astrophys. J., 507, 46, 1998.

    Article  ADS  Google Scholar 

  8. J. M. Overduin and F. I. Cooperstock, Phys. Rev., D 58, 043506, 1998.

    Article  ADS  Google Scholar 

  9. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys., D 9, 373, 2000.

    ADS  Google Scholar 

  10. E. Komatsu et al., Astrophys. J. Suppl. Ser., 180, 330, 2009.

    Article  ADS  Google Scholar 

  11. S. Kachru, R. Kallosh, A. Linde et al., Phys. Rev. D, 68, 046005, 2003.

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Weinberg, Rev. Mod. Phys., 61, 23, 1989.

    Article  Google Scholar 

  13. S. M. Carroll, Living Reviews in Relativity, 4, 1, 2001.

  14. S. Perlmutter et al., Astrophys. J., 598, 102, 2003.

    Article  ADS  Google Scholar 

  15. P. Astier et al., Astron. Astrophys., 447, 31, 2006.

    Article  ADS  Google Scholar 

  16. C. Wetterich, Nucl. Phys. B, 302, 668, 1988.

    Article  ADS  Google Scholar 

  17. B. Ratra, J. Peebles, Phys. Rev. D, 37, 321, 1988.

    Article  Google Scholar 

  18. R. R. Caldwell, Phys. Lett. B, 545, 23, 2002.

    Article  ADS  Google Scholar 

  19. S. Nojiri and S. D. Odinstov, Phys. Lett. B, 565, 1, 2003.

    Article  ADS  Google Scholar 

  20. S. Nojiri and S. D. Odinstov, Phys. Lett. B, 562, 147, 2003.

    Article  ADS  Google Scholar 

  21. T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D, 62, 023511, 2000.

    Article  ADS  Google Scholar 

  22. C. Armendariz-Picon et al., Phys. Rev. Lett., 85, 4438, 2000.

    Article  ADS  Google Scholar 

  23. C. Armendariz-Picon et al., Phys. Rev. D, 63, 103510, 2001.

    Article  ADS  Google Scholar 

  24. A. Sen, J. High Energy Phys., 04, 048, 2002.

  25. T. Padmanabhan and T. R. Chaudhury, Phys. Rev. D, 66, 081301, 2002.

    Article  ADS  Google Scholar 

  26. E. Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D, 70, 043539, 2004.

    Article  ADS  Google Scholar 

  27. A. Anisimov, E. Babichev, and A. Vikman, J. Cosmol. Astropart. Phys., 06, 006, 2005.

    Article  ADS  Google Scholar 

  28. S. D. Katore et al., Astrophysics, 57, 384, 2014.

    Article  ADS  Google Scholar 

  29. M. S. Borkar and A. Ameen, Astrophysics, 60, 242, 2017.

    Article  ADS  Google Scholar 

  30. H. Wei, Class. Quantum Gravity, 29, 175008, 2012.

    Article  ADS  Google Scholar 

  31. M. Sharif and A. Jawad, Eur. Phys. J. C, 73, 2382, 2013.

    Article  ADS  Google Scholar 

  32. M. Sharif and A. Jawad, Eur. Phys. J. C, 73, 2600, 2013.

    Article  ADS  Google Scholar 

  33. M. Sharif and S. Rani, J. Exp. Theor. Phys., 119, 75, 2014.

    Article  ADS  Google Scholar 

  34. A. Jawad, Astrophys. Space Sci., 356, 119, 2015.

    Article  ADS  Google Scholar 

  35. A. Jawad and U. Debnath, Commun. Theor. Phys., 357, 37, 2015.

    Google Scholar 

  36. A. Jawad and A. Majeed, Astrophys. Space Sci., 356, 375, 2015.

    Article  ADS  Google Scholar 

  37. A. Jawad et al., The Europian Phys. J., 131, 236, 2016.

    Google Scholar 

  38. A. Seykhi and M. S. Movahed, Gen. Relativ. Gravit., 44, 449, 2012.

    Article  ADS  Google Scholar 

  39. C. J. Feng, X. L. Li, and X. Y. Shen, Mod. Phys. Lett. A, 27, 1250182, 2012.

    Article  ADS  Google Scholar 

  40. M. Zubair and G. Abbas, Astrophys. Space Sci., 357, 154, 2015.

    Article  ADS  Google Scholar 

  41. J. Sadeghi and M. Khurshudyan, Int. J. Mod. Phys. D, 25, 1650108, 2016.

    Article  ADS  Google Scholar 

  42. M. Honarvaryan, A. Sheykhi, and H. Moradpour, Int. J. Mod. Phys. D, 24, 1550048, 2015.

    Article  ADS  Google Scholar 

  43. H. Hosseinkhani et al., Theor. Math. Phys., 194, 415, 2018.

    Article  Google Scholar 

  44. H. Hosseinkhani et al., Theor. Phys., 69, 4, 2018.

    ADS  Google Scholar 

  45. A. Jawad, Eur. Phys. J. C, 74, 3215, 2014.

    Article  Google Scholar 

  46. M. Sharif and A. Jawad, Astrophys. Space Sci., 351, 321, 2014.

    Article  ADS  Google Scholar 

  47. M. Sharif and K. Nazir, Astrophys. Space Sci., 360, 57, 2015.

  48. U. M. Rao and U. Y. D. Prasanti, Can. J. Phys., 94, 1040, 2016.

    Article  ADS  Google Scholar 

  49. M. V. Santhi et al., Astrophys. Space Sci., 361, 142, 2016.

    Article  ADS  Google Scholar 

  50. M. V. Santhi et al., Int. J. Theor. Phys., 56, 362, 2017.

    Article  Google Scholar 

  51. A. Einstein, Ann. der Phys., 354, 769, 1916.

    Article  ADS  Google Scholar 

  52. H. Weyl, Math. Z., 2, 384, 1918.

    Article  MathSciNet  Google Scholar 

  53. G. Lyra, Math. Z., 54, 52, 1951.

    Article  MathSciNet  Google Scholar 

  54. W. D. Halford, Aust. J. Phys., 23, 863, 1970.

    Article  ADS  Google Scholar 

  55. W. D. Halford, J. Math. Phys., 13, 1699, 1972.

    Article  ADS  Google Scholar 

  56. K. S. Adhav, Int. J. Astron. Astrophys., 1, 24, 2011.

  57. G. C. Samanta, International J. Theor. Phys., 52, 3442, 2013.

    Article  ADS  Google Scholar 

  58. J. K. Singh and N. K. Sharma, Int. J. Theor. Phys., 53, 1375, 2014.

    Article  Google Scholar 

  59. D. D. Pawar, Y. S. Solanke, and S. P. Shahare, Bulg. J. Phys., 41, 60 2014.

    Google Scholar 

  60. S. D. Katore and S. P. Hatkar, New Astron., 34, 172, 2015.

    Article  ADS  Google Scholar 

  61. S. Ram, S. Chandel, and M. K. Verma, Chin. J. Phys., 54, 6, 2016.

    Article  Google Scholar 

  62. S. D. Katore and D. V. Kapse, Pramana J. Phys., 88, 30, 2017.

  63. S. Ram, S. Chandel, and M. K. Verma, Proc. Natl. Acad. of Sci., India Sect. A: Phys. Sci., pp.1-6, 2018.

  64. K. Das and T. Sultana, Astrophys. Space Sci., 357, 118, 2015.

    Article  ADS  Google Scholar 

  65. M. V. Santhi, V. U. M. Rao, and Y. Aditya, Int. J. Theor. Phys., 56, 362, 2017.

    Article  Google Scholar 

  66. S. Bhattacharya and T. M. Karade, Astrophys. Space Sci., 202, 69, 1993.

    Article  ADS  MathSciNet  Google Scholar 

  67. D. K. Sen, Z. Phys. C, 149, 311, 1957.

  68. K. S. Thorne, Astrophys. J., 148, 51, 1967.

    Article  ADS  Google Scholar 

  69. S. D. Katore et al., Astrophysics, 59, 525, 2016.

    Article  ADS  Google Scholar 

  70. M. Sharif and K. Nazir, Astrophys. Space Sci., 360, 57, 2015.

  71. K. Das and T. Sultana, Astrophys. Space Sci., 360, 4, 2015.

    Article  ADS  Google Scholar 

  72. A. G. Reiss et al., Astron. J., 607, 665, 2004.

    Article  Google Scholar 

  73. J. L. Torny et al., Astrophys. J., 594, 1, 2003.

    Article  ADS  Google Scholar 

  74. A. Clocchiatti et al., Astrophys. J., 642, 1, 2006.

    Article  ADS  Google Scholar 

  75. V. Sahni, T. D. Saini, A. A. Starobinsky et al., JETP Lett., 77, 201, 2003.

    Article  ADS  Google Scholar 

  76. K. Karami, S. Ghaffari, and J. Fehri, Eur. Phys. J. C, 64, 85, 2009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Katore.

Additional information

Published in Astrofizika, Vol. 62, No. 3, pp. 463-479 (August 2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katore, S.D., Kapse, D.V. Dynamical Behavior of Coupled Magnetized Dark Energy in Lyra's Geometry. Astrophysics 62, 415–433 (2019). https://doi.org/10.1007/s10511-019-09592-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09592-5

Keywords

Navigation