Skip to main content
Log in

Heating of Intergalactic Gas Near Growing Black Holes During the Hydrogen Reionization Epoch

  • Published:
Astrophysics Aims and scope

Black holes growing during Eddington accretion emit a large number of ultraviolet and x-ray photons which can influence the ionization and thermal state of the surrounding intergalactic gas before the onset of the hydrogen reionization epoch in the universe. This radiation heats the gas beyond the temperature of the relict radiation (cosmic microwave background CMB) TCMB (z) to a red shift z ~ 8 –12 within 0.1-3 Mpc of a black hole with initial mass ~300 M formed at z ~ 20-50 and growing with radiation efficiency ε ~ 0.15 – 0.075. The size of the gas regions in which the degree of ionization of hydrogen is higher than the residual value after recombination, i.e., greater than 10-4, approaches the same levels. More substantial heating and ionization of the gas takes place in a smaller volume. In the vicinity of 30-300 kpc, for the same black hole parameters, it is heated to above 104 K or almost an order of magnitude greater than around a black hole with almost constant mass. The radiative flux from growing black holes is sufficient for complete (above 99%) production of ionized hydrogen and doubly ionized helium within 3-10 kpc of the parent minihalo. The recombination time for hydrogen in the ionization zones surrounding the black holes exceeds the local age of the universe for z ≲ 10. These zones, which occupy several kiloparsecs, can become seeds for the next reionization of the universe. It turns out that extended regions with sizes of hundreds of kiloparsecs where radiation from growing black holes substantially changes the evolution of the intergalactic gas will radiate in the 21 cm line of atomic hydrogen, since the gas in these zones essentially remains neutral at a temperature exceeding that of the CMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Mortlock, et al., Nature, 474, 616 (2011).

    Article  ADS  Google Scholar 

  2. X.-B. Wu, et al., Nature, 518, 512 (2015).

    Article  ADS  Google Scholar 

  3. Z. Haiman, in: T. Wiklind, B. Mobasher, and V. Bromm, eds., The First Galaxies, Astrophys. Space Sci. Library, 396 (2013), p. 293.

  4. M. Volonteri, Science, 337, 544 (2012).

    Article  ADS  Google Scholar 

  5. N. Yoshida, K. Omukai, and L. Hernquist, Science, 321, 669 (2008).

    Article  ADS  Google Scholar 

  6. A. Stacy, T. H. Greif, and V. Bromm, Mon. Not. Roy. Astron. Soc. 422, 290 (2012).

    Article  ADS  Google Scholar 

  7. S. E. Woosley and A. Heger, Very Massive Stars in the Local Universe, Astrophys. Space Sci. Library, 412, 199, (Springer International Publishing) (2015).

  8. P. Madau and M. J. Rees, Astrophys. J. 551, L27 (2001).

    Article  ADS  Google Scholar 

  9. Z. Haiman and A. Loeb, Astrophys. J. 552, 459 (2001).

    Article  ADS  Google Scholar 

  10. M. Volonteri, F. Haardt, and P. Madau, Astrophys. J. 582, 559 (2003).

    Article  ADS  Google Scholar 

  11. A. Loeb and F. A. Rasio, Astrophys. J. 432, 52 (1994).

    Article  ADS  Google Scholar 

  12. S. P. Oh and Z. Haiman, Astrophys. J. 569, 558 (2002).

    Article  ADS  Google Scholar 

  13. G. Lodato and P. Natarajan, Mon. Not. Roy. Astron. Soc. 371, 1813 (2006).

    Article  ADS  Google Scholar 

  14. K. Inayoshi, K. Omukai, and E. Tasker, Mon. Not. Roy. Astron. Soc. 445, L109 (2014).

    Article  ADS  Google Scholar 

  15. F. Becerra, T. H. Greif, V. Springel, et al., Mon. Not. Roy. Astron. Soc. 446, 2380 (2015).

    Article  ADS  Google Scholar 

  16. M. A. Latif, D. R. G. Schleicher, and T. Hartwig, Mon. Not. Roy. Astron. Soc. 458, 233 (2016).

    Article  ADS  Google Scholar 

  17. Z. Haiman, T. Abel, and M. J. Rees, Astrophys. J. 534, 11 (2000).

    Article  ADS  Google Scholar 

  18. M. Ricotti and J. P. Ostriker, Mon. Not. Roy. Astron. Soc. 352, 547 (2004).

    Article  ADS  Google Scholar 

  19. M. B. Eide, L. Graziani, B. Ciardi, et al., Mon. Not. Roy. Astron. Soc. 476, 1174 (2018).

    Article  ADS  Google Scholar 

  20. M. Volonteri and M. J. Rees, Astrophys. J. 633, 624 (2005).

    Article  ADS  Google Scholar 

  21. M. Volonteri and M. J. Rees, Astrophys. J. 650, 669 (2006).

    Article  ADS  Google Scholar 

  22. Z. Haiman, A. A. Thoul, and A. Loeb, Astrophys. J. 464, 523 (1996).

    Article  ADS  Google Scholar 

  23. M. Tegmark, J. Silk, M. J. Rees, et al., Astrophys. J. 474, 1 (1997).

    Article  ADS  Google Scholar 

  24. L. Gao, S. D. M. White, A. Jenkins, et al., Mon. Not. Roy. Astron. Soc. 363, 379 (2005).

    Article  ADS  Google Scholar 

  25. D. Whalen, T. Abel, M. L. Norman, Astrophys. J. 610, 14 (2004).

    Article  ADS  Google Scholar 

  26. T. Kitayama, N. Yoshida, H. Susa, et al., Astrophys. J. 613, 631 (2004).

    Article  ADS  Google Scholar 

  27. E. O. Vasiliev, E. I. Vorobyov, A. O. Razoumov, et al., Astron. Rep. 56, 564 (2012).

    Article  ADS  Google Scholar 

  28. B. Ciardi and A. Ferrara, Spa. Sci. Rev. 116, 625 (2005).

    Article  ADS  Google Scholar 

  29. R. Cen, Astrophys. J. Suppl. Ser. 78, 341 (1992).

    Article  ADS  Google Scholar 

  30. S. C. O. Glover and A.-K. Jappsen, Astrophys. J. 666, 1 (2007).

    Article  ADS  Google Scholar 

  31. M. Ricotti, N. Y. Gnedin, and J. M. Shull, Astrophys. J. 575, 33 (2002).

    Article  ADS  Google Scholar 

  32. J. M. Shull and M. E. van Steenberg, Astrophys. J. 298, 268 (1985).

    Article  ADS  Google Scholar 

  33. S. Seager, D. Sasselov, and D. Scott, Astrophys. J. Supll. Ser. 128, 407 (2000).

    Article  ADS  Google Scholar 

  34. E. O. Vasiliev, Sh. K. Sethi, and Yu. A. Shchekinov, Astrophys. J., submitted (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Vasiliev.

Additional information

Translated from Astrofizika, Vol. 61, No. 3, pp. 399-416 (August 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, E.O., Shchekinov, Y.A., Sethi, S.K. et al. Heating of Intergalactic Gas Near Growing Black Holes During the Hydrogen Reionization Epoch. Astrophysics 61, 354–369 (2018). https://doi.org/10.1007/s10511-018-9542-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-018-9542-9

Keywords

Navigation