Skip to main content
Log in

Light Chemical Elements in Stars: Mysteries and Unsolved Problems

  • REVIEW
  • Published:
Astrophysics Aims and scope

The first eight elements of the periodic table are discussed: H, He, Li, Be, B, C, N, and O. They are referred to as key elements, given their important role in stellar evolution. It is noteworthy that all of them were initially synthesized in the Big Bang. The primordial abundances of these elements calculated using the Standard Model of the Big Bang (SMBB) are presented in this review. The good agreement between the SMBB and observations of the primordial abundances of the isotopes of hydrogen and helium, D, 3He, and 4He, is noted, but there is a difference of ~0.5 dex for lithium (the isotope 7Li) between the SMBB and observations of old stars in the galactic halo that has not yet been explained. The abundances of light elements in stellar atmospheres depends on the initial rotation velocity, so the typical rotation velocities of young Main Sequence (MS) stars are examined. Since the data on the abundances of light elements in stars are very extensive, the main emphasis in this review is on several unsolved problems. The helium abundance He/H in early B-type of the MS stars shows an increment with age; in particular, for the most massive B stars with masses M = 12−19M⦿, He/H increases by more than a factor of two toward the end of the MS. Theoretical models of stars with rotation cannot explain such a large increase in He/H. For early B- and late O-type MS stars that are components of close binary systems, He/H undergoes a sharp jump in the middle of the MS stage that is a mystery for the theory. The anomalous abundance of helium (and lithium) in the atmospheres of chemically peculiar stars (types He-s, He-w, HgMn, Ap, and Am) is explained in terms of the diffusion of atoms in surface layers of the stars, but this hypothesis cannot yet explain all the features of the chemical composition of these stars. The abundances of lithium, beryllium, and boron in FGK-dwarfs manifest a trend with decreasing effective temperature T eff as well as a dip at T eff ~ 6600 K in the Hyades and other old clusters. The two effects are among the unsolved problems. In the case of lithium, there is special interest in FGK-giants and supergiants that are rich in lithium (they have logε(Li)≥ 2). Most of them cannot be explained in terms of the standard theory of stellar evolution, so nonstandard hypotheses are invoked: the recent synthesis of lithium in a star and the engulfment by a star of a giant planet with mass equal to that of Jupiter or greater. An analysis of the abundances of carbon, nitrogen, and oxygen in early B- and late O-stars of the MS indicates that the C II, N II, and O II ions are overionized in their atmospheres. For early B-type MS stars, good agreement is found between observations of the N/O ratio and model calculations for rotating stars. A quantitative explanation of the well-known “nitrogen-oxygen” anticorrelation in FGK-giants and supergiants is found. It reflects the dependence of the anomalies in N and C on the initial rotation velocity V0. The stellar rotation models which yield successful explanations for C, N. and O cannot, however, explain the observed helium enrichment in early B-type MS stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asplund, N. Grevesse, A. J. Sauval, et al., Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  2. L. S. Lyubimkov, Kinematics and Physics of Celestial Bodies 26, 169 (2010).

    Article  ADS  Google Scholar 

  3. L. S. Lyubimkov, Astrophysics 59, 411 (2016).

    Article  ADS  Google Scholar 

  4. A. Coc, S. Goriely, Y. Xu, et al., Astrophys. J. 744, 158 (2012).

    Article  ADS  Google Scholar 

  5. R. J. Cooke, M. Pettini, R. A. Jorgenson, et al., Astrophys. J. 781, id. 31 (2014).

  6. Y. I. Izotov, T. X. Thuan, and N. G. Guseva, Mon. Not. Roy. Astron. Soc. 445, 778 (2014).

    Article  ADS  Google Scholar 

  7. T. Bania, R. Rood, and D. Balser, Nature, 415, 54 (2002).

    Article  ADS  Google Scholar 

  8. M. Spite, F. Spite, and P. Bonifacio, Mem. Soc. Astron. Italiana Suppl. 22, 9 (2012).

    ADS  Google Scholar 

  9. M. Spite, F. Spite, E. Caffau, et al., Astron. Astrophys. 582, A74 (2015).

    Article  ADS  Google Scholar 

  10. F. Spite and M. Spite, Astron. Astrophys. 115, 357 (1982).

    ADS  Google Scholar 

  11. R. H. Cyburt, B. D. Fields, K. A. Olive, et al., Modern Physics, 88, id. 015004 (2016).

  12. P. Bonifacio, L. Sbordone, E. Caffau, et al., Astron. Astrophys. 542, A87 (2012).

    Article  Google Scholar 

  13. A. Maeder, Physics, Formation and Evolution of Rotating Stars. Springer, Berlin (2009).

    Google Scholar 

  14. C. Georgy, S. Ekstrom, A. Granada, et al., Astron. Astrophys. 553, A24 (2013).

    Article  Google Scholar 

  15. C. W. Allen, Astrophysical Quantities (3 ed.), Athlone Press, London (1973).

    Google Scholar 

  16. H. A. Abt, H. Levato, and M. Grosso, Astrophys. J. 573, 359 (2002).

    Article  ADS  Google Scholar 

  17. S. Simón-Diaz and A. Herrero, Astron. Astrophys. 562, A135 (2014).

    Article  ADS  Google Scholar 

  18. G. A. Bragança, S. Daflon, K. Cunha, et al., Astron. J. 144, 130 (2012).

    Article  ADS  Google Scholar 

  19. J. Zorec and F. Royer, Astron. Astrophys. 537, A120 (2012).

    Article  ADS  Google Scholar 

  20. L. S. Lyubimkov, Pis’ma v Astron. zh. 1 (11), 29 (1975).

    ADS  Google Scholar 

  21. L. S. Lyubimkov, Astrophysics 13, 71 (1977).

    Article  ADS  Google Scholar 

  22. L. S. Lyubimkov, S. I. Rostopchin, and D. L. Lambert, Mon. Not. Roy. Astron. Soc. 351, 745 (2004).

    Article  ADS  Google Scholar 

  23. L. S. Lyubimkov, Astrophys. Space Sci. 243, 329 (1996).

    Article  ADS  Google Scholar 

  24. E. Sturm and K. P. Simon, Astron. Astrophys. 282, 93 (1994).

    ADS  Google Scholar 

  25. K. P. Simon, E. Sturm, and A. Fiedle, Astron. Astrophys. 292, 507 (1994).

    ADS  Google Scholar 

  26. L. S. Lyubimkov, Chemical Composition of Stars: Method and Results of Analysis, Astroprint, Odessa (1995).

    Google Scholar 

  27. L. S. Lyubimkov, Bull. Crimean Astrophys. Obs. 110, 9 (2014).

    Article  ADS  Google Scholar 

  28. A. Heger and N. Langer, Astrophys. J. 544, 1016 (2000).

    Article  ADS  Google Scholar 

  29. E. Caffau, H.-G. Ludwig, M. Steffen, et al., Solar. Phys. 268, 255 (2011).

    Article  ADS  Google Scholar 

  30. T. W. R. Monroe, J. Meléndez, I. Ramírez, et al., Astrophys. J. Lett. 774, L32 (2013).

    Article  ADS  Google Scholar 

  31. A. M. Boesgaard and M. Tripicco, Astrophys. J. 302, L49 (1986).

    Article  ADS  Google Scholar 

  32. A. M. Boesgaard and J. R. King, Astrophys. J. 565, 587 (2002).

    Article  ADS  Google Scholar 

  33. A. M. Boesgaard, Astron. Soc. Pacific Conf. Ser. 336, 39 (2005).

    Google Scholar 

  34. A. M. Boesgaard, M. G. Lum, C. P. Deliyannis, et al., Astrophys. J. 830, id. 49 (2016).

  35. L. S. Lyubimkov, D. L. Lambert, B. M. Kaminsky, et al., Mon. Not. Roy. Astron. Soc. 427, 11 (2012).

    Google Scholar 

  36. L. S. Lyubimkov and D. V. Petrov, Astrophysics 60, 333 (2017).

    Article  ADS  Google Scholar 

  37. A. G. W. Cameron and W. A. Fowler, Astrophys. J. 164, 111 (1971).

    Article  ADS  Google Scholar 

  38. C. Aguilera-Gómez, J. Chanamé, M. H. Pinsonneault, et al., Astrophys. J. 829, id. 127 (2016).

  39. L. S. Lyubimkov, Astrophysics 56, 472 (2013).

    Article  ADS  Google Scholar 

  40. M. F. Nieva and N. Przybilla, Astron. Astrophys. 539, A143 (2012).

    Article  Google Scholar 

  41. L. Fossati, N. Castro, T. Morel, et al., Astron. Astrophys. 574, A20 (2015).

    Article  Google Scholar 

  42. L. S. Lyubimkov, Astrophysics 59, 472 (2016).

    Google Scholar 

  43. R. E. Luck and D. L. Lambert, Astrophys. J. 298, 782 (1985).

    Article  ADS  Google Scholar 

  44. L. S. Lyubimkov, D. L. Lambert, S. A. Korotin, et al., Mon. Not. Roy. Astron. Soc. 446, 3447 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lyubimkov.

Additional information

Translated from Astrofizika, Vol. 61, No. 2, pp. 297-325 (May 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimkov, L.S. Light Chemical Elements in Stars: Mysteries and Unsolved Problems. Astrophysics 61, 262–285 (2018). https://doi.org/10.1007/s10511-018-9533-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-018-9533-x

Keywords

Navigation