Magnetic Transients During the Flares of May 9, 2012, in NOAA 11476 and July 4, 2012, in NOAA 11515


Variations in the longitudinal magnetic field in NOAA 11476 and NOAA 11515 during M-class solar flares are studied. Magnetic field observations were made by the Solar Dynamics Observatory using the Helioseismic and Magnetic Imager (SDO/HMI) with temporal and spatial resolutions of 45 s and 0".5 pixel-1, respectively. During the maximum phase of the M5.7/2B flare of May 9, 2012, in NOAA 11476, and the M5.3/2B flare of July 4, 2012, in NOAA 11515, there were abrupt changes in the magnetic field of the active regions. Transient structures with the opposite sign appeared in high magnetic fields with negative polarity. The transients were located in the umbra of sunspots and lasted several minutes. We study these features of the magnetic field in detail.


sun activity flares magnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Patterson and H. Zirin, Astrophys. J. 243, L99 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    N. I. Lozitskaya and V. G. Lozitskii, Sov. Astron. Lett. 8, 270 (1982).ADSGoogle Scholar
  3. 3.
    H. Wang, Solar Phys. 140, 85 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    H. Wang, Jr. M. W. Ewell, H. Zirin, et al., Astrophys. J. 424, 436 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    A. G. Kosovichev and V. V. Zharkova, Astrophys. J. 550, L105 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    H. Wang, et al., Astrophys. J. 576, 497 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. Sudol and J. W. Harvey, Astrophys. J. 635, 647 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    G. J. D. Petrie and J. J. Sudol, Astrophys. J. 724, 1218 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. Wang, et al., Astrophys. J. 745, L17 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Maurya, P. Vemareddy, and A. Ambastha, Astrophys. J. 747, 134 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    O. Burtseva, J. C. Martínez-Oliveros, G. J. D. Petrie, et al., Astrophys. J. 806, 173 (2015).Google Scholar
  12. 12.
    T. J. Spirock, V. B. Yurchyshyn, and H. Wang, Astrophys. J. 572, 1072 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    H. Wang, Astrophys. J. 649, 490 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    Y. L. Song and M. Zhang, Astrophys. J. 826, 173 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. Patterson, Astrophys. J. 280, 884 (1984).ADSCrossRefGoogle Scholar
  16. 16.
    J. Schou, et al., Solar Phys. 275, 229 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    S. M. White, R. J. Thomas, and R. A. Schwartz, Solar Phys. 227, 231 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    R. A. Maurya and A. Ambastha, Solar Phys. 258, 31 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Crimean Astrophysical ObservatoryRussian Academy of SciencesCrimeaRussia

Personalised recommendations