Astrophysics

pp 1–18 | Cite as

Is Partial Mixing of Matter in the Components of Binary Systems Possible?

Article
  • 1 Downloads

Data on the absolute elements of the components of binary systems which are in the hydrogen burning phase and belong to different early spectral B subclasses are analyzed using models of stars with partial mixing of matter from the radiative envelope and convective core. Partial mixing favors a larger increase in the luminosity and a smaller increase in the size of a star as it evolves along the main sequence (MS). The available data on the masses, sizes, and luminosities of the components of binary systems support the possibility of partial mixing in their interiors similar to the mixing that occurs in isolated MS B-stars in the same spectral subclasses. The mechanism of partial mixing can serve as an alternative or a supplement to the mechanism of additional mixing at the boundary of the convective core in analyses of the observed characteristics of binary systems, in particular the enhanced luminosity of the optical components of x-ray binaries, and this requires further study. The existing data on the absolute elements of the components are insufficient for imposing strict limits on the amount of partial mixing and identifying quantitative differences between mixing in the components of binary systems and isolated stars, if this occurs.

Keywords

stars- structure and evolution binaries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Lyubimkov, S. I. Rostopchin, and D. Lambert, Mon. Not. Roy. Astron. Soc. 351, 745 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    W. Huang and D. R. Gies, Astrophys. J. 648, 591 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    E. I. Staritsin, Astron. Rep. 58, 808 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    E. I. Staritsin, Astron. zh. 94, 447 (2017).Google Scholar
  5. 5.
    G. Michaud, J. Dupuis, G. Fontaine, et al., Astrophys. J. 322, 302 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    K. Hunger and D. Groote, Astron. Astrophys. 351, 554 (1999).ADSGoogle Scholar
  7. 7.
    J. Krtička, J. Kubát, and D. Groote, Astron. Astrophys. 460, 145 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 72, 212 (1995).ADSGoogle Scholar
  9. 9.
    A. Tarasov, P. Harmanec, J. Horn, et al., Astron. Astrophys. Suppl. 110, 59 (1995).ADSGoogle Scholar
  10. 10.
    L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 73, 55 (1996).Google Scholar
  11. 11.
    L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 74, 710 (1997).ADSGoogle Scholar
  12. 12.
    J. L. Tassoul and M. Tassoul, Astrophys. J. 261, 265 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    J. L. Tassoul, Astrophys. J. 322, 856 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    J. L. Tassoul and M. Tassoul, Astrophys. J. 359, 155 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    J.-P. Zahn, Astron. Astrophys. 265, 115 (1992).ADSGoogle Scholar
  16. 16.
    A. Maeder and J.-P. Zahn, Astron. Astrophys. 334, 1000 (1998).ADSGoogle Scholar
  17. 17.
    S. E. de Mink, M. Cantiello, N. Langer, et al., Astron. Astrophys. 497, 243 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    H. F. Song, A. Maeder, G. Meynet, et al., Astron. Astrophys. 556, 100 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Talon and J.-P. Zahn, Astron. Astrophys. 317, 749 (1997).ADSGoogle Scholar
  20. 20.
    B. Paczynski, Acta Astron. 20, 47 (1970).ADSGoogle Scholar
  21. 21.
    C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    D. R. Alexander and J. Ferguson, Astrophys. J. 437, 879 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht, Astron. Astrophys. Suppl. 72, 259 (1988).ADSGoogle Scholar
  24. 24.
    J. S. Vink, A. de Koter, and H. J. Lamers, Astron. Astrophys. 362, 295 (2000).ADSGoogle Scholar
  25. 25.
    G. Schaller, D. Schaerer, G. Meynet, et al., Astron. Astrophys. Suppl. 96, 269 (1992).ADSGoogle Scholar
  26. 26.
    G. Meynet, J.-C. Mermilliod, and A. Maeder, Astron. Astrophys. Suppl. 98, 477 (1993).ADSGoogle Scholar
  27. 27.
    O. Yu. Malkov, Mon. Not. Roy. Astron. Soc. 382, 1073 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    A. Gimenez, J. V. Clausen, and J. Andersen, Astron. Astrophys. 160, 310 (1986).ADSGoogle Scholar
  29. 29.
    K. Pan, Astron. Astrophys. 321 (202 (1997).Google Scholar
  30. 30.
    S. Albrecht, J. N. Winn, J. A. Carter, et al., Astrophys. J. 726, 68 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    J. A. Eaton, Astron. J. 106, 2081 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    K. De Mey, C. Aerts, C. Waelkens, et al., Astron. Astrophys. 310, 164 (1996).ADSGoogle Scholar
  33. 33.
    W. Huang and D. R. Gies, Astrophys. J. 648, 580 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    A. Afifi and S. Azen, Statistical Analysis. A Computer Oriented Approach [Russian translation], Mir, Moscow (1982).Google Scholar
  35. 35.
    O. Demircan and G. Kahraman, Astrophys. Space Sci. 181, 313 (1991).ADSCrossRefGoogle Scholar
  36. 36.
    S. Yu. Gorda and M. A. Svechnikov, Astron. zh. 75, 896 (1998).Google Scholar
  37. 37.
    S. Yu. Gorda and M. A. Svechnikov, Astron. zh. 76, 598 (1999).Google Scholar
  38. 38.
    Z. Eker, F. Soydugan, E. Soydugan, et al., Astron. J. 149, 131 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    E. Vitrichenko, D. K. Hadezhin, and T. L. Razinkova, Pis’ma v Astron. zh. 33, 287 (2007).Google Scholar
  40. 40.
    D. Ya. Martynov, A Course in General Astrophysics [in Russian], Nauka, Moscow (1979).Google Scholar
  41. 41.
    D. A. Kovaleva, Astron. zh. 78, 1104 (2001).Google Scholar
  42. 42.
    P. Mayer, H. Drechsel, P. Harmanec, et al., Astron. Astrophys. 559, 22 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    M. Tüysüz, F. Soydugan, S. Bilir, et al., New Astron. 28, 44 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    T. J. Harries, R. W. Hilditch, and G. Hill, Mon. Not. Roy. Astron. Soc. 285, 277 (1997).ADSCrossRefGoogle Scholar
  45. 45.
    D. Stickland, C. Lloyd, I. Pachoulakis, et al., The Observatory 118, 356 (1998).ADSGoogle Scholar
  46. 46.
    D. A. Kovaleva, Astron. zh. 79, 259 (2002).Google Scholar
  47. 47.
    A. Tkachenko, P. Degroote, C. Aerts, et al., Mon. Not. Roy. Astron. Soc. 438, 3093 (2014).Google Scholar
  48. 48.
    K. Pavlovski, E. Tamajo, P. Koubský, et al., Mon. Not. Roy. Astron. Soc. 400, 791 (2009).Google Scholar
  49. 49.
    E. F. Guinan, I. Ribas, E. L. Fitzpatrick, et al., Astrophys. J. 544, 409 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    E. I. Popova and A. V. Tutukov, Astron. zh. 67, 428 (1990).ADSGoogle Scholar
  51. 51.
    V. S. Petrov, A. V. Tutukov, and A. M. Cherepashchuk, Astron. zh. 84, 165 (2007).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yeltsin Urals Federal UniversityEkaterinburgRussia

Personalised recommendations