Skip to main content
Log in

Is Partial Mixing of Matter in the Components of Binary Systems Possible?

  • Published:
Astrophysics Aims and scope

Data on the absolute elements of the components of binary systems which are in the hydrogen burning phase and belong to different early spectral B subclasses are analyzed using models of stars with partial mixing of matter from the radiative envelope and convective core. Partial mixing favors a larger increase in the luminosity and a smaller increase in the size of a star as it evolves along the main sequence (MS). The available data on the masses, sizes, and luminosities of the components of binary systems support the possibility of partial mixing in their interiors similar to the mixing that occurs in isolated MS B-stars in the same spectral subclasses. The mechanism of partial mixing can serve as an alternative or a supplement to the mechanism of additional mixing at the boundary of the convective core in analyses of the observed characteristics of binary systems, in particular the enhanced luminosity of the optical components of x-ray binaries, and this requires further study. The existing data on the absolute elements of the components are insufficient for imposing strict limits on the amount of partial mixing and identifying quantitative differences between mixing in the components of binary systems and isolated stars, if this occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Lyubimkov, S. I. Rostopchin, and D. Lambert, Mon. Not. Roy. Astron. Soc. 351, 745 (2004).

    Article  ADS  Google Scholar 

  2. W. Huang and D. R. Gies, Astrophys. J. 648, 591 (2006).

    Article  ADS  Google Scholar 

  3. E. I. Staritsin, Astron. Rep. 58, 808 (2014).

    Article  ADS  Google Scholar 

  4. E. I. Staritsin, Astron. zh. 94, 447 (2017).

    Google Scholar 

  5. G. Michaud, J. Dupuis, G. Fontaine, et al., Astrophys. J. 322, 302 (1987).

    Article  ADS  Google Scholar 

  6. K. Hunger and D. Groote, Astron. Astrophys. 351, 554 (1999).

    ADS  Google Scholar 

  7. J. Krtička, J. Kubát, and D. Groote, Astron. Astrophys. 460, 145 (2006).

    Article  ADS  Google Scholar 

  8. L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 72, 212 (1995).

    ADS  Google Scholar 

  9. A. Tarasov, P. Harmanec, J. Horn, et al., Astron. Astrophys. Suppl. 110, 59 (1995).

    ADS  Google Scholar 

  10. L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 73, 55 (1996).

    Google Scholar 

  11. L Lyubimkov, T. Rachkovskaya, S. Rastopchin, et al., Astron. zh. 74, 710 (1997).

    ADS  Google Scholar 

  12. J. L. Tassoul and M. Tassoul, Astrophys. J. 261, 265 (1982).

    Article  ADS  Google Scholar 

  13. J. L. Tassoul, Astrophys. J. 322, 856 (1987).

    Article  ADS  Google Scholar 

  14. J. L. Tassoul and M. Tassoul, Astrophys. J. 359, 155 (1990).

    Article  ADS  Google Scholar 

  15. J.-P. Zahn, Astron. Astrophys. 265, 115 (1992).

    ADS  Google Scholar 

  16. A. Maeder and J.-P. Zahn, Astron. Astrophys. 334, 1000 (1998).

    ADS  Google Scholar 

  17. S. E. de Mink, M. Cantiello, N. Langer, et al., Astron. Astrophys. 497, 243 (2009).

    Article  ADS  Google Scholar 

  18. H. F. Song, A. Maeder, G. Meynet, et al., Astron. Astrophys. 556, 100 (2013).

    Article  Google Scholar 

  19. S. Talon and J.-P. Zahn, Astron. Astrophys. 317, 749 (1997).

    ADS  Google Scholar 

  20. B. Paczynski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  21. C. A. Iglesias and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  22. D. R. Alexander and J. Ferguson, Astrophys. J. 437, 879 (1994).

    Article  ADS  Google Scholar 

  23. C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht, Astron. Astrophys. Suppl. 72, 259 (1988).

    ADS  Google Scholar 

  24. J. S. Vink, A. de Koter, and H. J. Lamers, Astron. Astrophys. 362, 295 (2000).

    ADS  Google Scholar 

  25. G. Schaller, D. Schaerer, G. Meynet, et al., Astron. Astrophys. Suppl. 96, 269 (1992).

    ADS  Google Scholar 

  26. G. Meynet, J.-C. Mermilliod, and A. Maeder, Astron. Astrophys. Suppl. 98, 477 (1993).

    ADS  Google Scholar 

  27. O. Yu. Malkov, Mon. Not. Roy. Astron. Soc. 382, 1073 (2007).

    Article  ADS  Google Scholar 

  28. A. Gimenez, J. V. Clausen, and J. Andersen, Astron. Astrophys. 160, 310 (1986).

    ADS  Google Scholar 

  29. K. Pan, Astron. Astrophys. 321 (202 (1997).

  30. S. Albrecht, J. N. Winn, J. A. Carter, et al., Astrophys. J. 726, 68 (2011).

    Article  ADS  Google Scholar 

  31. J. A. Eaton, Astron. J. 106, 2081 (1993).

    Article  ADS  Google Scholar 

  32. K. De Mey, C. Aerts, C. Waelkens, et al., Astron. Astrophys. 310, 164 (1996).

    ADS  Google Scholar 

  33. W. Huang and D. R. Gies, Astrophys. J. 648, 580 (2006).

    Article  ADS  Google Scholar 

  34. A. Afifi and S. Azen, Statistical Analysis. A Computer Oriented Approach [Russian translation], Mir, Moscow (1982).

  35. O. Demircan and G. Kahraman, Astrophys. Space Sci. 181, 313 (1991).

    Article  ADS  Google Scholar 

  36. S. Yu. Gorda and M. A. Svechnikov, Astron. zh. 75, 896 (1998).

    Google Scholar 

  37. S. Yu. Gorda and M. A. Svechnikov, Astron. zh. 76, 598 (1999).

    Google Scholar 

  38. Z. Eker, F. Soydugan, E. Soydugan, et al., Astron. J. 149, 131 (2015).

    Article  ADS  Google Scholar 

  39. E. Vitrichenko, D. K. Hadezhin, and T. L. Razinkova, Pis’ma v Astron. zh. 33, 287 (2007).

  40. D. Ya. Martynov, A Course in General Astrophysics [in Russian], Nauka, Moscow (1979).

  41. D. A. Kovaleva, Astron. zh. 78, 1104 (2001).

    Google Scholar 

  42. P. Mayer, H. Drechsel, P. Harmanec, et al., Astron. Astrophys. 559, 22 (2013).

    Article  ADS  Google Scholar 

  43. M. Tüysüz, F. Soydugan, S. Bilir, et al., New Astron. 28, 44 (2014).

    Article  ADS  Google Scholar 

  44. T. J. Harries, R. W. Hilditch, and G. Hill, Mon. Not. Roy. Astron. Soc. 285, 277 (1997).

    Article  ADS  Google Scholar 

  45. D. Stickland, C. Lloyd, I. Pachoulakis, et al., The Observatory 118, 356 (1998).

    ADS  Google Scholar 

  46. D. A. Kovaleva, Astron. zh. 79, 259 (2002).

    Google Scholar 

  47. A. Tkachenko, P. Degroote, C. Aerts, et al., Mon. Not. Roy. Astron. Soc. 438, 3093 (2014).

  48. K. Pavlovski, E. Tamajo, P. Koubský, et al., Mon. Not. Roy. Astron. Soc. 400, 791 (2009).

  49. E. F. Guinan, I. Ribas, E. L. Fitzpatrick, et al., Astrophys. J. 544, 409 (2000).

    Article  ADS  Google Scholar 

  50. E. I. Popova and A. V. Tutukov, Astron. zh. 67, 428 (1990).

    ADS  Google Scholar 

  51. V. S. Petrov, A. V. Tutukov, and A. M. Cherepashchuk, Astron. zh. 84, 165 (2007).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Staritsin.

Additional information

Translated from Astrofizika, Vol. 61, No. 2, pp. 235-254 (May 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staritsin, E.I. Is Partial Mixing of Matter in the Components of Binary Systems Possible?. Astrophysics 61, 206–223 (2018). https://doi.org/10.1007/s10511-018-9529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-018-9529-6

Keywords

Navigation