, Volume 61, Issue 1, pp 113–121 | Cite as

Magnetic Field Generation in Hybrid Stars

  • D. M. Sedrakian
  • M. V. Hayrapetyan
  • D. S. Baghdasaryan

The mechanism for magnetic field generation in hybrid neutron stars (containing “npe,” hadron, “2SC” and “CFL” quark phases) is discussed. It is assumed that the rotational vortices in “npe” and “CFL” phases with a quantum of circulation h/2m also continue in the “2SC” phase. Since the superconducting components in the “npe” and “2SC” phases are charged, entrainment currents develop around the vortices and generate a magnetic field. The average magnetic field in the quark phase is on the order of 5·1015 G and exceeds the field in the “npe” phase by 2-3 orders of magnitude. The magnetic field penetrates into the “CFL” phase by means of magnetic vortices with a flux 2Φ0 and it can partially destroy the proton superconductivity in the “npe” phase. On the star’s surface, the magnetic field reaches 5·1014 G, a level comparable to the magnetic field of magnetars. Magnetars may, therefore, contain quark matter.


magnetars hybrid stars quarks superconductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. N. Manchester, G. B. Hobbs, A. Teoh, et al., Astron. J. 129, 1993 (2005), astroph/0412641,
  2. 2.
    S. Mereghetti, J. A. Pones, and A. Melatos, Magnetars: Properties, Origin and Evolution, in: V. S. Belkin, et al., eds., The Strongest Magnetic fields in the Universe, Springer (2016), astro-ph.HE/1503.06313.Google Scholar
  3. 3.
    D. M. Sedrakian and K. M. Shakhabasyan, Usp. Fiz. Nauk 161(7), 3 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    A. D. Sedrakian and D. M. Sedrakian, Astrophys. J. 447, 305 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    D. Bailin and A. Love, Phys. Rep. 107, 325 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys B 537, 443 (1999).Google Scholar
  7. 7.
    T. Schäfer and F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    T. Schäfer, Nucl. Phys. B 575, 269 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    N. Ippolito, M. Ruggieri, D. Rischke, et al., Phys. Rev. D 77, 023004 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    B. Knippel and A. Sedrakian, Phys. Rev. D 79, 083007 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    N. S. Ayvazyan, G. Colucci, D. Rischke, et al., Astron. Astrophys. 559, A118 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    M. G. Alford and A. Sedrakian, astro-ph. HE/1706. 01592.Google Scholar
  13. 13.
    G. A. Vardanyan and D. M. Sedrakian, Zh. Eksp. Teor. Fiz., 81, 919 (1981).Google Scholar
  14. 14.
    D. M. Sedrakian, K. M. Shakhabasyan, and A. G. Movsisyan, Astrophysics, 20, 656 (1985).ADSGoogle Scholar
  15. 15.
    K. Iida and G. Baym, Phys. Rev. D 66, 014015 (2002), hep-ph/0204124.Google Scholar
  16. 16.
    K. Iida, Phys. Rev. D 71, 054011 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    A. P. Balachandran, S. Digal, and T. Matsuura, Phys. Rev. D 73, 074009 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    D. Blaschke, D. M. Sedrakian, and K. M. Shahabasian, Astron. Astrophys. 350, L47 (1999).ADSGoogle Scholar
  19. 19.
    D. Blaschke and D. M. Sedrakian, nucl-th/0006038.Google Scholar
  20. 20.
    M. Alford and A. Sedrakian, J. Phys. G 37, 075202 (2010).Google Scholar
  21. 21.
    D. M. Sedrakian, Astrophysics, 43, 275 (2000).CrossRefGoogle Scholar
  22. 22.
    D. M. Sedrakian and M. V. Hayrapetyan, Astrophysics, 55, 377 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    D. M. Sedrakian and M. V. Hayrapetyan, Astrophysics, 58, 131 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. M. Sedrakian
    • 1
  • M. V. Hayrapetyan
    • 1
  • D. S. Baghdasaryan
    • 2
  1. 1.Erevan State UniversityYerevanArmenia
  2. 2.V. Ambartsumyan Byurakan Astrophysical ObservatoryByurakanArmenia

Personalised recommendations