Equatorial outflows driven by jets in Population III microquasars

Abstract

Binary systems of Population III can evolve to microquasars when one of the stars collapses into a black hole. When the compact object accretes matter at a rate greater than the Eddington rate, powerful jets and winds driven by strong radiation pressure should form. We investigate the structure of the jet-wind system for a model of Population III microquasar on scales beyond the jet-wind formation region. Using relativistic hydrodynamic simulations we find that the ratio of kinetic power between the jet and the disk wind determines the configuration of the system. When the power is dominated by the wind, the jet fills a narrow channel, collimated by the dense outflow. When the jet dominates the power of the system, part of its energy is diverted turning the wind into a quasi-equatorial flow, while the jet widens. From the results of our simulations, we implement semi-analytical calculations of the impact of the quasi-equatorial wind on scales of the order of the size of the binary system. Our results indicate that Population III microquasars might inject gamma rays and relativistic particles into the early intergalactic medium, contributing to its reionization at large distances from the binary system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    In the super-critical accretion regime, there exists some critical radius \(r_{\mathrm{cr}}\) such that outside \(r_{\mathrm{cr}}\), the accretion rate is constant and the disk is a radiation-pressure dominated standard disk. Inside \(r_{\mathrm{cr}}\), the accretion rate decreases with the radius as to maintain the critical rate, expelling the excess of mass by the radiation-driven wind (Fukue 2004).

  2. 2.

    One can still assume that some fraction of the jet energy can be in the form of radiating non-thermal particles, but we assume that such a component will not affect the jet dynamics.

  3. 3.

    The equatorial wind in Population III microquasars does not stop accretion. In these systems the accretion is by overflowing the Roche lobe, therefore the accreted matter flows only in the plane where the Lagrange point is contained, while the equatorial wind is always directed above the accretion disk. On the contrary, accretion arrest could occur if mass transfer from the star is by stellar winds, as in Population I microquasars.

  4. 4.

    The particle acceleration rate depends on the shock velocity and the diffusion coefficient of the medium. For both shocks parallel or perpendicular to the magnetic field, the diffusion coefficient is a multiple of the Bohm diffusion coefficient, therefore the acceleration timescale is inversely proportional to the gyroradius of the particles (See Drury 1983).

References

  1. Abramowicz, M.A., Calvani, M., Nobili, L.: Astrophys. J. 242, 772 (1980)

    ADS  Article  Google Scholar 

  2. Akizuki, C., Fukue, J.: Publ. Astron. Soc. Jpn. 58, 469 (2006)

    ADS  Article  Google Scholar 

  3. Beckwith, K., Hawley, J.F., Krolik, J.H.: Astrophys. J. 678(2), 1180 (2008)

    ADS  Article  Google Scholar 

  4. Beloborodov, A.M.: Mon. Not. R. Astron. Soc. 297(3), 739 (1998)

    ADS  Article  Google Scholar 

  5. Blundell, K.M., Mioduszewski, A.J., Muxlow, T.W.B., Podsiadlowski, P., Rupen, M.P.: Astrophys. J. Lett. 562(1), 79 (2001)

    ADS  Article  Google Scholar 

  6. Bosch-Ramon, V., Romero, G.E., Paredes, J.M.: Astron. Astrophys. 447(1), 263 (2006)

    ADS  Article  Google Scholar 

  7. Calvani, M., Nobili, L.: Astrophys. Space Sci. 79(2), 387 (1981)

    ADS  Google Scholar 

  8. de la Cita, V.M., Bosch-Ramon, V., Paredes-Fortuny, X., Khangulyan, D., Perucho, M.: Astron. Astrophys. 591, 15 (2016)

    Article  Google Scholar 

  9. Donat, R., Marquina, A.: J. Comput. Phys. 125(1), 42 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  10. Donat, R., Font, J.A., Ibáñez, J.M.S.S., Marquina, A.: J. Comput. Phys. 146(1), 58 (1998)

    ADS  Article  Google Scholar 

  11. Drury, L.O.: Rep. Prog. Phys. 46(8), 973 (1983)

    ADS  Article  Google Scholar 

  12. Eggum, G.E., Coroniti, F.V., Katz, J.I.: Astrophys. J. Lett. 298, 41 (1985)

    ADS  Article  Google Scholar 

  13. Fabrika, S.: Astrophys. Space Phys. Res. 12, 1 (2004)

    ADS  Google Scholar 

  14. Fukue, J.: Publ. Astron. Soc. Jpn. 52, 829 (2000)

    ADS  Article  Google Scholar 

  15. Fukue, J.: Publ. Astron. Soc. Jpn. 56, 569 (2004)

    ADS  Article  Google Scholar 

  16. Fukue, J.: Publ. Astron. Soc. Jpn. 57, 691 (2005)

    ADS  Article  Google Scholar 

  17. Fukue, J.: Publ. Astron. Soc. Jpn. 61, 1305 (2009)

    ADS  Article  Google Scholar 

  18. Fukue, J.: Publ. Astron. Soc. Jpn. 63, 803 (2011)

    ADS  Article  Google Scholar 

  19. Globus, N., Levinson, A.: Mon. Not. R. Astron. Soc. 461(3), 2605 (2016)

    ADS  Article  Google Scholar 

  20. Jaroszynski, M., Abramowicz, M.A., Paczynski, B.: Acta Astron. 30(1), 1 (1980)

    ADS  Google Scholar 

  21. Kitabatake, E., Fukue, J., Matsumoto, K.: Publ. Astron. Soc. Jpn. 54, 235 (2002)

    ADS  Article  Google Scholar 

  22. Lipunova, G.V.: Astron. Lett. 25(8), 508 (1999)

    ADS  Google Scholar 

  23. Liska, M., Hesp, C., Tchekhovskoy, A., Ingram, A., van der Klis, M., Markoff, S.: Mon. Not. R. Astron. Soc. 474(1), 81 (2018)

    ADS  Article  Google Scholar 

  24. Mathys, G.: In: Wolf, B., Stahl, O., Fullerton, A.W. (eds.) Direct Observational Evidence for Magnetic Fields in Hot Stars, vol. 523, p. 95 (1999)

    Google Scholar 

  25. McCray, R., Snow, T.P. Jr.: Annu. Rev. Astron. Astrophys. 17, 213 (1979)

    ADS  Article  Google Scholar 

  26. Meier, D.L.: Astrophys. J. 233, 664 (1979)

    ADS  Article  Google Scholar 

  27. Meier, D.L.: Astrophys. Space Sci. 300(1-3), 55 (2005)

    ADS  Article  Google Scholar 

  28. Migliari, S., Fender, R., Méndez, M.: Science 297(5587), 1673 (2002)

    ADS  Article  Google Scholar 

  29. Mignone, A., Bodo, G.: Mon. Not. R. Astron. Soc. 364(1), 126 (2005)

    ADS  Article  Google Scholar 

  30. Müller, A.L., Romero, G.E., Roth, M.: Mon. Not. R. Astron. Soc. 496(2), 2474 (2020)

    ADS  Article  Google Scholar 

  31. Narayan, R., Yi, I.: Astrophys. J. Lett. 428, 13 (1994)

    ADS  Article  Google Scholar 

  32. Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: Publ. Astron. Soc. Jpn. 55, 69 (2003)

    ADS  Article  Google Scholar 

  33. Nishiyama, S., Watarai, K.-Y., Fukue, J.: Publ. Astron. Soc. Jpn. 59, 1227 (2007)

    ADS  Article  Google Scholar 

  34. Ohsuga, K., Mineshige, S., Watarai, K.-y.: Astrophys. J. 596(1), 429 (2003)

    ADS  Article  Google Scholar 

  35. Ohsuga, K., Mori, M., Nakamoto, T., Mineshige, S.: Astrophys. J. 628(1), 368 (2005)

    ADS  Article  Google Scholar 

  36. Okuda, T., Teresi, V., Toscano, E., Molteni, D.: Mon. Not. R. Astron. Soc. 357(1), 295 (2005)

    ADS  Article  Google Scholar 

  37. Paczyńsky, B., Wiita, P.J.: Astron. Astrophys. 500, 203 (1980)

    ADS  Google Scholar 

  38. Paragi, Z., Fejes, I., Vermeulen, R.C., Schilizzi, R.T., Spencer, R.E., Stirling, A.M.: In: Proceedings of the 6th EVN Symposium, p. 263 (2002)

    Google Scholar 

  39. Perucho, M., Martí, J.M., Hanasz, M.: Astron. Astrophys. 443(3), 863 (2005)

    ADS  Article  Google Scholar 

  40. Reimer, A., Pohl, M., Reimer, O.: Astrophys. J. 644(2), 1118 (2006)

    ADS  Article  Google Scholar 

  41. Romero, G., Gutiérrez, E.: Universe 6(7), 99 (2020)

    ADS  Article  Google Scholar 

  42. Romero, G.E., Sotomayor Checa, P.: Int. J. Mod. Phys. D 27(10), 1844019 (2018)

    ADS  Article  Google Scholar 

  43. Romero, G.E., Vila, G.S.: Astron. Astrophys. 485(3), 623 (2008)

    ADS  Article  Google Scholar 

  44. Romero, G.E., Vieyro, F.L., Vila, G.S.: Astron. Astrophys. 519, 109 (2010)

    ADS  Article  Google Scholar 

  45. Romero, G.E., Boettcher, M., Markoff, S., Tavecchio, F.: Space Sci. Rev. 207(1-4), 5 (2017)

    ADS  Article  Google Scholar 

  46. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 500, 33 (1973)

    ADS  Google Scholar 

  47. Sotomayor Checa, P., Romero, G.E.: Astron. Astrophys. 629, 76 (2019)

    ADS  Article  Google Scholar 

  48. Tchekhovskoy, A.: In: Contopoulos, I., Gabuzda, D., Kylafis, N. (eds.) Launching of Active Galactic Nuclei Jets. Astrophys. Space Sci. Library, vol. 414, p. 45 (2015)

    Google Scholar 

  49. Usov, V.V.: Astrophys. J. 389, 635 (1992)

    ADS  Article  Google Scholar 

  50. Wiita, P.J.: Comments Astrophys. 9(6), 251 (1982)

    ADS  Google Scholar 

  51. Wolfire, M.G., McKee, C.F., Hollenbach, D., Tielens, A.G.G.M.: Astrophys. J. 587(1), 278 (2003)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

PSC is Fellow of CONICET and PhD student at Universidad Nacional de La Plata (UNLP). PSC thanks the UNLP for the training received during his undergraduate studies, and the public education system in Argentina. GER is very grateful to the ICCUB where part of this research was done. This work was supported by the Argentine agency CONICET (PIP 2014-00338) and the Spanish Ministerio de Ciencia e Innovación (MICINN) under grant PID2019-105510GBC31 and though the “Center of Excellence María de Maeztu 2020-2023” award to the ICCUB (CEX2019-000918-M). V.B-R. is Correspondent Researcher of CONICET, Argentina, at the IAR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Sotomayor Checa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sotomayor Checa, P., Romero, G.E. & Bosch-Ramon, V. Equatorial outflows driven by jets in Population III microquasars. Astrophys Space Sci 366, 13 (2021). https://doi.org/10.1007/s10509-020-03911-5

Download citation

Keywords

  • Accretion, accretion disks
  • Stars: black holes
  • Stars: winds, outflows
  • Stars: Population III
  • X-rays: binaries