Cosmological volume acceleration in dust epoch: using scaling solutions and variable cosmological term \(\Lambda (t)\) within an anisotropic cosmological model

Abstract

Under the premise that the current observations of the cosmic microwave background radiation set a very stringent limit to the anisotropy of the universe, we consider an anisotropic model in the presence of a barotropic perfect fluid and a homogeneous scalar field, which transits to a flat FRW cosmology for late times in a dust epoch, presenting an accelerated volume expansion. Furthermore, the scalar field is identified with a varying cosmological term via \(V(\phi (t))=2\Lambda (t)\). Exact solutions to the EKG system are obtained by proposing an anisotropic extension of the scaling solutions scenario: \(\rho \sim \eta ^{-n}, \rho _{\phi }\sim \eta ^{-{m}}\), with \(\eta ^{3}={a}_{1}{a}_{2}{a}_{3}\) the volume function of the anisotropic model (\({a_{1}}, {a_{2}}, {a_{3}}\) being the scale factors).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abdel, A.M.M.: Gen. Relativ. Gravit. 22, 655 (1990)

    ADS  Google Scholar 

  2. Akarsu, Ö., et al.: Phys. Rev. D 100, 023532 (2019)

    ADS  MathSciNet  Google Scholar 

  3. Amirhashchi, H.: Phys. Rev. D 97, 063515 (2018)

    ADS  Google Scholar 

  4. Amirhashchi, H., Amirhashchi, S.: Phys. Rev. D 99, 023516 (2019)

    ADS  Google Scholar 

  5. Arbab, A.I.: Gen. Relativ. Gravit. 29, 61 (1997)

    ADS  Google Scholar 

  6. Arbab, A.I.: Spacetime and Substance, vol. 1, p. 39 (2001)

    Google Scholar 

  7. Arbab, A.I.: Class. Quantum Gravity 20, 93 (2003)

    ADS  Google Scholar 

  8. Arbab, A.I.: Astrophys. Space Sci. 291, 141 (2004)

    ADS  Google Scholar 

  9. Arbab, A.I., Abdel-Rahaman, A.M.M.: Phys. Rev. D 50, 7725 (1994)

    ADS  Google Scholar 

  10. Bal, R., Singh, J.P.: Int. J. Theor. Phys. 47, 3288 (2008)

    Google Scholar 

  11. Bali, R.: Int. J. Theor. Phys. 50, 3043 (2011)

    Google Scholar 

  12. Bali, R., Jain, V.C.: Pramana J. Phys. 59, 1 (2002)

    ADS  Google Scholar 

  13. Beesham, A.: Phys. Rev. D 48, 3539 (1993)

    ADS  Google Scholar 

  14. Beesham, A.: Gen. Relativ. Gravit. 26, 159 (1994)

    ADS  Google Scholar 

  15. Belinchón, J.A.: Int. J. Mod. Phys. A 23, 5021 (2008)

    ADS  MathSciNet  Google Scholar 

  16. Belinskii, V.A., Khalatnikov, I.M.: Sov. Phys. JETP 63, 1121 (1972)

    Google Scholar 

  17. Birkel, M., Sarkar, S.: Astropart. Phys. 6, 197 (1997)

    ADS  Google Scholar 

  18. Burd, A.B., Barrow, J.D.: Nucl. Phys. B 308, 929 (1988)

    ADS  Google Scholar 

  19. Bylan, S., Scialom, D.: Phys. Rev. D 57, 6065 (1998)

    ADS  MathSciNet  Google Scholar 

  20. Carneiro, S., Lima, J.A.S.: Int. J. Mod. Phys. A 20, 2465 (2005)

    ADS  Google Scholar 

  21. Carvalho, J.C., et al.: Phys. Rev. D 46, 2404 (1992)

    ADS  Google Scholar 

  22. Chen, W., Wu, Y.S.: Phys. Rev. D 41, 695 (1990)

    ADS  Google Scholar 

  23. Copeland, E.J., et al.: Phys. Rev. D 57, 4686 (1998)

    ADS  Google Scholar 

  24. Cunha, J.V., Santos, R.C.: Int. J. Mod. Phys. D 13, 1321 (2004)

    ADS  Google Scholar 

  25. Espinoza García, A., et al.: Int. J. Theor. Phys. 53(9), 3066–3077 (2014)

    MathSciNet  Google Scholar 

  26. Esposito, G., et al.: Class. Quantum Gravity 24, 6255 (2007)

    ADS  Google Scholar 

  27. Ferreira, P.G., Joyce, M.: Phys. Rev. Lett. 79, 4740 (1997)

    ADS  Google Scholar 

  28. Ferreira, P.G., Joyce, M.: Phys. Rev. D 58, 023503 (1998)

    ADS  Google Scholar 

  29. Folomeev, V.N., Gurovich, V.T.: Gen. Relativ. Gravit. 32(7), 1255 (2000)

    ADS  Google Scholar 

  30. Fomin, P.I., et al.: Preprint (2005). gr-qc/0509042

  31. Goswami, G.K., et al.: Mod. Phys. Lett. A 35, 2050086 (2020). https://doi.org/10.1142/S0217732320500868

    ADS  Article  Google Scholar 

  32. Halliwell, J.: Phys. Lett. B 185, 341 (1985)

    ADS  Google Scholar 

  33. Jamil, M., Debnath, U.: Int. J. Theor. Phys. 50, 1602 (2011)

    Google Scholar 

  34. Kalligas, D., et al.: Gen. Relativ. Gravit. 24, 351 (1992)

    ADS  MathSciNet  Google Scholar 

  35. Knop, R.A., et al.: Astrophys. J. 598, 102 (2003)

    ADS  Google Scholar 

  36. Kumar, S., Singh, C.P.: Astrophys. Space Sci. 312, 57 (2007)

    ADS  Google Scholar 

  37. Liddle, A.R., Sharrer, R.J.: Phys. Rev. D 59, 023509 (1998)

    ADS  Google Scholar 

  38. Lima, J.A.S., Carvalho, J.C.: Gen. Relativ. Gravit. 26, 909 (1994)

    ADS  Google Scholar 

  39. Lima, J.A.S., Maia, J.M.F.: Phys. Rev. D 49, 5597 (1994)

    ADS  Google Scholar 

  40. Lima, J.A.S., Trodden, M.: Phys. Rev. D 53, 4280 (1996)

    ADS  Google Scholar 

  41. Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)

    ADS  Google Scholar 

  42. Martinez-Gonzalez, E., Sanz, J.L.: Astron. Astrophys. 300, 346 (1995)

    ADS  Google Scholar 

  43. Mukhopadhyay, U., et al.: Int. J. Theor. Phys. 50, 752 (2011)

    Google Scholar 

  44. Overduin, J.M., Cooperstock, F.I.: Phys. Rev. D 58, 043506 (1998)

    ADS  Google Scholar 

  45. Pavon, D.: Phys. Rev. D 43, 375 (1991)

    ADS  Google Scholar 

  46. Pradhan, A.: Int. J. Mod. Phys. D 12, 941 (2003)

    ADS  MathSciNet  Google Scholar 

  47. Pradhan, A.: Fizika B 16, 205 (2007)

    ADS  Google Scholar 

  48. Pradhan, A.: Commun. Theor. Phys. 51, 367 (2009)

    ADS  Google Scholar 

  49. Pradhan, A., Kumar, A.: Int. J. Mod. Phys. D 10, 291 (2001)

    ADS  Google Scholar 

  50. Pradhan, A., Pandey, A.P.: Int. J. Mod. Phys. D 12, 1299 (2003)

    ADS  Google Scholar 

  51. Pradhan, A., Pandey, A.P.: Astrophys. Space Sci. 301, 127 (2006)

    ADS  Google Scholar 

  52. Pradhan, A., et al.: Int. J. Theor. Phys. 46, 2774 (2007a)

    Google Scholar 

  53. Pradhan, A., et al.: Rom. J. Phys. 52, 445 (2007b)

    Google Scholar 

  54. Pradhan, A., et al.: Braz. J. Phys. 38, 167 (2008)

    ADS  Google Scholar 

  55. Pradhan, A., et al.: Int. J. Theor. Phys. 50, 2923 (2011)

    Google Scholar 

  56. Pradhan, A., et al.: Astrophys. Space Sci. 337, 401 (2012)

    ADS  Google Scholar 

  57. Pradhan, A., et al.: Indian J. Phys. 89(5), 503 (2015)

    ADS  Google Scholar 

  58. Rahman, M.A., Ansary, M.: Prespace Time J. 4, 871 (2013)

    Google Scholar 

  59. Ray, S., et al.: Int. J. Theor. Phys. 50, 939 (2011)

    Google Scholar 

  60. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  61. Saha, B.: Astrophys. Space Sci. 302, 83 (2006)

    ADS  Google Scholar 

  62. Shahalam, M., et al.: Eur. Phys. J. C 75, 395 (2015)

    ADS  Google Scholar 

  63. Shen, M.: Int. J. Theor. Phys. 52, 178 (2013)

    Google Scholar 

  64. Silveira, V., Waga, I.: Phys. Rev. D 56, 4625 (1997)

    ADS  Google Scholar 

  65. Singh, T., et al.: Gen. Relativ. Gravit. 30, 573 (1998)

    ADS  Google Scholar 

  66. Singh, J.P., et al.: Astrophys. Space Sci. 314, 83 (2008)

    ADS  Google Scholar 

  67. Singh, M.K., et al.: Int. J. Phys. 1, 77 (2013)

    Google Scholar 

  68. Socorro, J., et al.: Rev. Mex. Fis. 56(2), 166–171 (2010)

    Google Scholar 

  69. Socorro, J., et al.: Adv. High Energy Phys. 2014, 805164 (2014)

    Google Scholar 

  70. Socorro, J., et al.: Astrophys. Space Sci. 360, 20 (2015)

    ADS  Google Scholar 

  71. Sola, J., Stefancic, H.: Phys. Lett. B 624, 147 (2005)

    ADS  Google Scholar 

  72. Sola, J., Stefancic, H.: Mod. Phys. Lett. A 21, 479 (2006)

    ADS  Google Scholar 

  73. Spergel, D.N., et al.: Astrophys. J. Suppl. 170, 377 (2007)

    ADS  Google Scholar 

  74. Starobinsky, A.A.: JETP Lett. 8, 757 (1998)

    ADS  Google Scholar 

  75. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  76. Tripathy, S.K.: Int. J. Theor. Phys. 52, 4218 (2013)

    Google Scholar 

  77. Tripathy, S.K., et al.: Astrophys. Space Sci. 340, 211 (2012)

    ADS  Google Scholar 

  78. Vishwakarma, R.G.: Class. Quantum Gravity 17, 3833 (2000)

    ADS  Google Scholar 

  79. Vishwakarma, R.G.: Gen. Relativ. Gravit. 33, 1973 (2001)

    ADS  Google Scholar 

  80. Wand, D., et al.: Ann. N.Y. Acad. Sci. 688, 647 (1993)

    ADS  Google Scholar 

  81. Weetterich, C.: Nucl. Phys. B 302, 668 (1998)

    ADS  Google Scholar 

  82. Zia, R., et al.: New Astron. 72, 83 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by PROMEP grants UGTO-CA-3. S.P.P. and J.S. were partially supported SNI-CONACYT. This work is part of the collaboration within the Instituto Avanzado de Cosmología and Red PROMEP: Gravitation and Mathematical Physics under project Quantum aspects of gravity in cosmological models, phenomenology and geometry of space-time. Many calculations where done by Symbolic Program REDUCE 3.8.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Socorro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Socorro, J., Pérez-Payán, S., Espinoza-García, A. et al. Cosmological volume acceleration in dust epoch: using scaling solutions and variable cosmological term \(\Lambda (t)\) within an anisotropic cosmological model. Astrophys Space Sci 365, 93 (2020). https://doi.org/10.1007/s10509-020-03810-9

Download citation

Keywords

  • Exact solution
  • Acceleration in dust epoch
  • Variable cosmological term
  • Anisotropic cosmological model