Bulk viscous string cosmological models in Saez-Ballester theory of gravity

Abstract

In this communication, a new class of bulk viscous string cosmological models has been constructed in Saez-Ballester theory of gravitation. To obtain the deterministic solution of the field equations, we have considered deceleration parameter as a bilinear function of cosmic time \(t\) for model I and special parametrization of Hubble parameter for model II. The presented class of the cosmological models indicate phase conversion from early decelerated expansion phase to present accelerated expansion phase. To discuss the dynamicity of the universe, the behaviour of various physical parameters has also been studied and presented graphically. For stability analysis, the nature of various energy conditions is investigated. Statefinder pair analysis is used to discriminate the constructed models with other dark energy models and it is noticed that the proposed models are in good agreement with recent observational data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Adhav, K.S., Ugale, M.R., Kale, C.B., Bhende, M.P.: Bianchi type VI string cosmological model in Saez-Ballester’s scalar tensor theory of gravitation. Int. J. Theor. Phys. 46, 3122–3127 (2007)

    MATH  Google Scholar 

  2. Akarsu, Ö., Dereli, T.: Cosmological models with linearly varying deceleration parameter. Int. J. Theor. Phys. 51, 612 (2012)

    MATH  Google Scholar 

  3. Armendariz-Picon, T., et al.: k-Inflation. Phys. Lett. B 458, 209 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Avelino, A., Nucamendi, U.: Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe. J. Cosmol. Astropart. 4, 006 (2009)

    ADS  Google Scholar 

  5. Banerjee, N., Das, S.: Acceleration of the universe with a simple trigonometric potential. Gen. Relativ. Gravit. 37, 1695–1703 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Barber, G.A.: On two “self creation” cosmologies. Gen. Relativ. Gravit. 14, 117–136 (1982)

    ADS  MathSciNet  Google Scholar 

  7. Bennet, C.L., et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  8. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Brevik, I., Gorbunova, O.: Dark energy and viscous cosmology. Gen. Relativ. Gravit. 37, 2039–2045 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Brevik, I., Odintsov, S.D.: Cardy-Verlinde entropy formula in viscous cosmology. Phys. Rev. D 65, 067302 (2002)

    ADS  MathSciNet  Google Scholar 

  11. Chand, A., Mishra, R.K., Pradhan, A.: FRW cosmological models in Brans-Dicke theory of gravity with variable \(q\) and dynamical \(\Lambda \)-term. Astrophys. Space Sci. 361, 81 (2016)

    ADS  MathSciNet  Google Scholar 

  12. Chawla, C., Mishra, R.K.: Bianchi Type-I viscous fluid cosmological models with variable deceleration parameter. Rom. J. Phys. 58, 75 (2013)

    MathSciNet  Google Scholar 

  13. Chawla, C., Mishra, R.K., Pradhan, A.: A new class of accelerating cosmological models with variable \(G\) and \(\Lambda \) in sáez and ballester theory of gravitation. Rom. J. Phys. 59, 12–25 (2014)

    Google Scholar 

  14. Clocchiatti, A., et al.: Hubble space telescope and ground based observations of Type 1a supernovae at redshift 0.5: cosmological implications. Astrophys. J. 642, 1 (2006)

    ADS  Google Scholar 

  15. Cunha, C.E., et al.: Estimating the redshift distribution of photometric galaxy samples II. Applications and tests of a new method. Mon. Not. R. Astron. Soc. 396, 2379–2398 (2009)

    ADS  Google Scholar 

  16. de Bernardis, P., et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    ADS  Google Scholar 

  17. De Sitter, W.: Einstein’s theory of gravitation and astronomical consequences. Mon. Not. R. Astron. Soc. 78, 3–28 (1917)

    ADS  Google Scholar 

  18. Einstein, A.: Kosmologische Betrachtugen zur algemeinen Relativitatstheorie. Sitz.ber. Preuss. Akad. Wiss. 1, 142–152 (1917)

    MATH  Google Scholar 

  19. Everett, A.E.: Cosmic strings in unified gauge theories. Phys. Rev. D 24, 858–868 (1981)

    ADS  Google Scholar 

  20. Fabris, J.C., Gonalves, S.V.B., de Sá Ribeiro, R.: Bulk viscosity driving the acceleration of the universe. Gen. Relativ. Gravit. 38, 495 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Feng, B., et al.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    ADS  Google Scholar 

  22. Gamow, G.: My Worldline, vol. 44. Viking Press, New York (1970)

    Google Scholar 

  23. Hanany, S., et al.: Maxima-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. Lett. 545, L5 (2000)

    ADS  Google Scholar 

  24. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R,T)\) gravity. Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  25. Khoury, J., Weltman, A.: Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004)

    ADS  Google Scholar 

  26. Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A, Math. Gen. 9, 1387 (1976)

    ADS  MATH  Google Scholar 

  27. Kibble, T.W.B.: Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980)

    ADS  MathSciNet  Google Scholar 

  28. Lemaître, G.: Un univers homogène de masse consttante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques. Ann. Soc. Sci. Brux. A 47, 49 (1927)

    MATH  Google Scholar 

  29. Letelier, P.S.: String cosmologies. Phys. Rev. D 28, 2414–2419 (1983)

    ADS  MathSciNet  Google Scholar 

  30. Maartens, R.: Dissipative cosmology. Class. Quantum Gravity 12, 1455 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Meng, X.H., Dou, X.: Friedmann cosmology with bulk viscosity: a concrete model for dark energy. Commun. Theor. Phys. 52, 377 (2009)

    ADS  MATH  Google Scholar 

  32. Meng, X.H., Ren, J., Hu, M.G.: Friedmann cosmology with a generalised equation of state and bulk viscosity. Commun. Theor. Phys. 47, 379 (2007)

    ADS  MATH  Google Scholar 

  33. Mishra, R.K., Chand, A.: Cosmological models in alternative theory of gravity with bilinear deceleration parameter. Astrophys. Space Sci. 361, 259 (2016)

    ADS  MathSciNet  Google Scholar 

  34. Mishra, R.K., Chand, A.: A comparative study of cosmological models in alternative theory of gravity with LVDP & BVDP. Astrophys. Space Sci. 362, 140 (2017)

    ADS  MathSciNet  Google Scholar 

  35. Mishra, R.K., Pradhan, A., Chawla, C.: Anisotropic viscous fluid cosmological models from deceleration to acceleration in string cosmology. Int. J. Theor. Phys. 52, 2546–2559 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Mishra, R.K., Chand, A., Pradhan, A.: Dark energy models in \(f(R,T)\) theory with variable deceleration parameter. Int. J. Theor. Phys. 55, 1241–1256 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Mishra, R.K., Dua, H., Chand, A.: Bianchi-III cosmological model with BVDP in modified \(f(R,T)\) theory. Astrophys. Space Sci. 363, 112 (2018a)

    ADS  MathSciNet  Google Scholar 

  38. Mishra, B., Tripathy, S.K., Ray, P.P.: Bianchi-V string cosmological models with dark energy anisotropy. Astrophys. Space Sci. 363, 86 (2018b)

    ADS  MathSciNet  Google Scholar 

  39. Nagpal, R., Pacif, S.K.J., Singh, J.K., Bamba, K., Beesham, A.: Analysis with observational constraints in \(\Lambda \) cosmology in \(f(R,T)\) gravity. Eur. Phys. J. C 78, 496 (2018)

    Google Scholar 

  40. Padmanabhan, T.: Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 66, 021301 (2002)

    ADS  Google Scholar 

  41. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J. 517, 565 (1999)

    ADS  MATH  Google Scholar 

  42. Ramesh, G., Umadevi, S.: LRS bianchi type-II minimally interacting holographic dark energy model in Saez-Ballester theory of gravitation. Astrophys. Space Sci. 361, 50 (2016)

    MathSciNet  Google Scholar 

  43. Rao, V.U.M., Prasanthi, U.Y.D., Aditya, Y.: Plane symmetric modified holographic Ricci dark energy model in Saez-Ballester theory of gravitation. Results Phys. 10, 469–475 (2018)

    ADS  Google Scholar 

  44. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  45. Reddy, D.R.K., Naidu, R.L., Sobhan Babu, K., Naidu, K.D.: Bianchi type-V bulk viscous string cosmological model in Saez-Ballester scalar tensor theory of gravitation. Astrophys. Space Sci. 349, 473–477 (2013)

    ADS  Google Scholar 

  46. Ren, J., Meng, X.H.: Cosmological model with viscosity media (dark fluid) described by an effective equation of state. Phys. Lett. B 633, 1 (2006)

    ADS  MATH  Google Scholar 

  47. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  48. Saez, D., Ballester, V.J.: A simple coupling with cosmological implications. Phys. Lett. A 113, 467–470 (1986)

    ADS  Google Scholar 

  49. Sahni, V., Saini, T.D., Starobinsky, A., Alam, U.: Statefinder—a new geometrical diagnostic of dark energy. JETP Lett. 77, 201–206 (2003)

    ADS  Google Scholar 

  50. Sahoo, P.K., Mishra, B., Sahoo, P., Pacif, S.K.J.: Bianchi type string cosmological models in \(f(R,T)\) gravity. Eur. Phys. J. Plus 131, 333 (2016)

    Google Scholar 

  51. Sahoo, P.K., Sahoo, P., Bishi, B.K.: Anisotropic cosmological models in \(f(R,T)\) gravity with variable deceleration parameter. Int. J. Geom. Methods Mod. Phys. 14, 1750097 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Sahoo, P.K., Tripathy, S.K., Sahoo, P.: A periodic varying deceleration parameter in \(f(R,T)\) gravity. Mod. Phys. Lett. A 33, 1850193 (2018)

    ADS  MATH  Google Scholar 

  53. Santhi, M.V., Rao, V.U.M., Aditya, Y.: Bulk viscous string cosmological models in \(f(R)\) gravity. Can. J. Phys. 96, 55–61 (2018)

    ADS  Google Scholar 

  54. Sen, A.: Tachyon matter. J. High Energy Phys. 0207, 065 (2002)

    ADS  MathSciNet  Google Scholar 

  55. Sharma, U.K., Zia, R., Pradhan, A.: Transit cosmological models with perfect fluid and heat flow in Saez-Ballester theory of gravitation. J. Astrophys. Astron. 40, 2 (2018)

    ADS  Google Scholar 

  56. Singh, C.P.: Bulk viscous cosmology in early universe. Pramana J. Phys. 71, 33 (2008a)

    ADS  Google Scholar 

  57. Singh, J.P.: A cosmological model with both deceleration and acceleration. Astrophys. Space Sci. 318, 103–107 (2008b)

    ADS  Google Scholar 

  58. Singh, P., Sami, M., Dadhich, N.: Cosmological dynamics of phantom field. Phys. Rev. D 68, 023522 (2003)

    ADS  Google Scholar 

  59. Thorne, P.S.: Primordial element formation, primordial magnetic fields and the isotropy of the universe. Astrophys. J. 148, 51 (1967)

    ADS  Google Scholar 

  60. Tiwari, R.K., Singh, R., Shukla, B.K.: A cosmological model with variable deceleration parameter. Afr. Rev. Phys. 10, 395 (2015)

    Google Scholar 

  61. Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1–24 (2003)

    ADS  Google Scholar 

  62. Vilenkin, A.: Cosmic strings. Phys. Rev. D 24, 2082–2089 (1981)

    ADS  MathSciNet  Google Scholar 

  63. Vinutha, T., Rao, V.U.M., Getaneh, B., Mengesha, M.: Dark energy cosmological models with cosmic string. Astrophys. Space Sci. 363, 188 (2018)

    ADS  MathSciNet  Google Scholar 

  64. Zel’dovich, Ya.B.: Cosmological fluctuations produced near a singularity. Mon. Not. R. Astron. Soc. 192, 663–667 (1980)

    ADS  Google Scholar 

  65. Zel’dovich, Ya.B., et al.: Cosmological consequences of a spontaneous breakdown of a discrete symmetry. Sov. Phys. JETP 40, 1–5 (1975)

    ADS  Google Scholar 

  66. Zia, R., Maurya, D.C., Pradhan, A.: Transit dark energy string cosmological models with perfect fluid in \(f(R,T)\) gravity. Int. J. Geom. Methods Mod. Phys. 15, 1850168 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Ethics declarations

Conflict of interest

There is no conflict of interest among authors of this communication and will abide by ethical standards of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Dua, H. Bulk viscous string cosmological models in Saez-Ballester theory of gravity. Astrophys Space Sci 364, 195 (2019). https://doi.org/10.1007/s10509-019-3689-7

Download citation

Keywords

  • Saez-Ballester theory
  • Deceleration parameter
  • Cosmological models
  • Dark energy