Complexity factor for a class of compact stars in \(f(R,T)\) gravity

Abstract

We investigate the concept of complexity factor for a class of compact star in the framework of modified \(f(R,T)\) gravity. We obtain a generic form of hydrostatic equilibrium equation, express the Einstein field equations, mass function and also physical observation for linear form of function \(f(R,T)=R+2\lambda T\), where \(\lambda \) is the coupling parameter, \(R\) is Ricci scalar and \(T\) is trace of energy momentum tensor. We have analyzed the properties of compact astrophysical objects like energy density and anisotropic pressure are affected by changing the values of coupling parameter \(\lambda \). We obtained numerical outputs of some physical variables for different chosen values of coupling parameter \(\lambda \) to observe the effect of \(\lambda \) on these quantities and show these in tabular form for different compact stars \(4U 1820\mbox{-}30\), \(\mathit{Her} X\mbox{-}1\), \(\mathit{SAX} J 1808.4\mbox{-}3658\) and \(\mathit{VelaX}\mbox{-}12\) with radii 10, 7.7, 7.07 and 9.99 respectively. We determine structure scalars with orthogonal splitting of the Riemann tensor and with the help of these scalars the complexity factor can be determined. Furthermore, we have checked some astrophysical sources for vanishing complexity factor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbas, G., Nazar, H.: Eur. Phys. J. C 78, 957 (2018a)

    ADS  Google Scholar 

  2. Abbas, G., Nazar, H.: Eur. Phys. J. C 78, 510 (2018b)

    ADS  Google Scholar 

  3. Alcock, C., Farhi, E., Olinto, A.: Astrophys. J. 310, 261 (1986)

    ADS  Google Scholar 

  4. Alvarenga, F.G.: J. Mod. Phys. 4, 130 (2013)

    Google Scholar 

  5. Antoniadis, J., et al.: Science 340, 6131 (2013)

    ADS  Google Scholar 

  6. Bel, L.: Ann. Inst. Henri Poincaré 17, 37 (1961)

    MathSciNet  Google Scholar 

  7. Bertolami, O., et al.: Phys. Rev. D 75, 104016 (2007)

    ADS  MathSciNet  Google Scholar 

  8. Bertolami, O., et al.: Phys. Rev. D 81, 104046 (2010)

    ADS  Google Scholar 

  9. Bhatti, M.Z., et al.: Eur. Phys. J. C 77, 690 (2017)

    ADS  Google Scholar 

  10. Calbet, X., Lopez-Ruiz, R.: Phys. Rev. E 066116, 63 (2001)

    Google Scholar 

  11. Capozziello, S.: Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  Google Scholar 

  12. Clifton, T., et al.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    ADS  MathSciNet  Google Scholar 

  13. Copeland, E.J., et al.: Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  14. Deb, D., et al.: Mon. Not. R. Astron. Soc. 485, 5652 (2019)

    ADS  Google Scholar 

  15. Demorest, P.B., et al.: Nature 467, 1081 (2010)

    ADS  Google Scholar 

  16. Egeland, E.: In: Compact Stars Trondheim, Norway (2007)

    Google Scholar 

  17. Farhi, E., Jaffe, R.L.: Phys. Rev. D 30, 2379 (1984)

    ADS  Google Scholar 

  18. Frieman, J.A., et al.: Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    ADS  Google Scholar 

  19. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  20. Herrera, L.: Phys. Rev. D 97, 044010 (2018)

    ADS  MathSciNet  Google Scholar 

  21. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)

    ADS  MathSciNet  Google Scholar 

  22. Herrera, L., et al.: Phy Rev D. 79, 064025 (2009)

    ADS  Google Scholar 

  23. Herrera, L., Di Prisco, A., Ospino, J.: Phys. Rev. D 98, 104059 (2018)

    ADS  MathSciNet  Google Scholar 

  24. Herrera, L., Di Prisco, A., Carot, J.: Phys. Rev. D 99, 124028 (2019a)

    ADS  MathSciNet  Google Scholar 

  25. Herrera, L., Di Prisco, A., Ospino, J.: Phys. Rev. D 99, 044049 (2019b)

    ADS  MathSciNet  Google Scholar 

  26. Houndjo, M.J.S.: Int. J. Mod. Phys. D 21, 1250003 (2012)

    ADS  MathSciNet  Google Scholar 

  27. Krori, K.D., Barua, J.: J. Phys. A, Math. Gen. 8, 508 (1975)

    ADS  Google Scholar 

  28. Lopez-Ruiz, R., et al.: Phys. Lett. A 209, 321 (1995)

    ADS  Google Scholar 

  29. Moraes, P.H.R.S.: Eur. Phys. J. C 75, 168 (2015)

    ADS  Google Scholar 

  30. Moraes, P.H.R.S.: Int. J. Theor. Phys. 55, 1307 (2016)

    Google Scholar 

  31. Moraes, P.H.R.S., et al.: J. Cosmol. Astropart. Phys. 06, 005 (2016)

    ADS  Google Scholar 

  32. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    MathSciNet  Google Scholar 

  33. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    ADS  MathSciNet  Google Scholar 

  34. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  35. Poplawski, N.J.: (2006). arXiv:quant-ph/0608031

  36. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  37. Shamir, M.F.: Eur. Phys. J. C 75, 354 (2015)

    ADS  Google Scholar 

  38. Sharif, M., Bhatti, M.Z.: J. Cosmol. Astropart. Phys. 10, 056 (2013)

    ADS  Google Scholar 

  39. Sharif, M., Butt, I.I.: Eur. Phys. J. C 78, 688 (2018)

    ADS  Google Scholar 

  40. Sharif, M., Siddiqa, A.: Mod. Phys. Lett. A 32, 1750151 (2017)

    ADS  Google Scholar 

  41. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. 355, 317 (2015)

    ADS  Google Scholar 

  42. Singh, V., Singh, C.P.: Astrophys. Space Sci. 356, 153 (2015)

    ADS  Google Scholar 

  43. Staykov, K.V., et al.: J. Cosmol. Astropart. Phys. 10, 6 (2014)

    ADS  Google Scholar 

  44. Tolman, R.: Phys. Rev. 35, 875 (1930)

    ADS  Google Scholar 

  45. Turner, M.S., Huterer, D.: J. Phys. Soc. Jpn. 76, 111015 (2007)

    ADS  Google Scholar 

  46. Yousaf, Z., et al.: Eur. Phys. J. C 78, 307 (2018)

    ADS  Google Scholar 

  47. Zubair, M., Abbas, G.: Astrophys. Space Sci. 342, 361 (2016)

    Google Scholar 

  48. Zubair, M., et al.: Astrophys. Space Sci. 8, 361 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Abbas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbas, G., Ahmed, R. Complexity factor for a class of compact stars in \(f(R,T)\) gravity. Astrophys Space Sci 364, 194 (2019). https://doi.org/10.1007/s10509-019-3688-8

Download citation

Keywords

  • Complexity factor
  • Self-gravitating system
  • \(f(R,T)\) gravity