The eruptive latitude of the solar flares during the Carrington rotations (CR1986-CR2195)

Abstract

In this study, we are investigating the solar flare events during each Carrington rotation in the period 2002–2017. We studied the relationship between solar flare event location and solar cycle progress (phases). The solar flare events are tending to accumulate around a specific latitude line in the southern and northern hemispheres of the solar disk, which we call the “eruptive latitude”. The eruptive latitude is migrating towards the solar equator during the declining phase and away from the solar equator during the ascending phase. The eruptive latitude is consistent with the sunspot butterfly diagram. We found the suitable equation describing the relationship between the eruptive latitude \(\varphi \) and the Carrington rotation number \(\mathit{CR}\) using sinusoidal summation function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdel-Sattar, W., Mawad, R., Moussas, X.: Study of solar flares’ latitudinal distribution during the solar period 2002–2017: GOES and RHESSI data comparison. Adv. Space Res. 62(9), 2701–2707 (2018). https://doi.org/10.1016/j.asr.2018.07.024

    Article  ADS  Google Scholar 

  2. Baranyi, T., Győri, L., Ludmány, A.: On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol. Phys. 291, 3081–3102 (2016)

    Article  ADS  Google Scholar 

  3. Bartels, J.: Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933. Terr. Magn. Atmos. Electr. 39(3), 201–202 (1934). https://doi.org/10.1029/TE039i003p00201

    Article  Google Scholar 

  4. Carrington, R.C.: Observations of the Spots on the Sun p. 221, 244 (1863)

    Google Scholar 

  5. Cliver, E.W., Dietrich, W.F.: The 1859 space weather event revisited: Limits of extreme activity. J. Space Weather Space Clim. 3, A31 (2013)

    Article  ADS  Google Scholar 

  6. Cliver, E.W., Svalgaard, L.: The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity. Sol. Phys. 224(1–2), 407–422 (2004). https://doi.org/10.1007/s11207-005-4980-z.

    Article  ADS  Google Scholar 

  7. Curto, J.J., Castell, J., Del Moral, F.: Sfe: Waiting for the big one. J. Space Weather Space Clim. 6, A23 (2016)

    Article  Google Scholar 

  8. Gnevyshev, M.N.: On the 11-years cycle of solar activity. Sol. Phys. 1(1), 107–120 (1967). https://doi.org/10.1007/BF00150306

    Article  ADS  Google Scholar 

  9. Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions. J. Geophys. Res. Space Phys. 110(A9), A09S15 (2005)

    ADS  Google Scholar 

  10. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: Properties of ground level enhancement events and the associated solar eruptions during Solar Cycle 23. Space Sci. Rev. 171, 23–60 (2012)

    Article  ADS  Google Scholar 

  11. Győri, L., Ludmány, A., Baranyi, T.: Comparative analysis of Debrecen sunspot catalogues. Mon. Not. R. Astron. Soc. 465, 1259–1273 (2017)

    Article  ADS  Google Scholar 

  12. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665–670 (2003). http://adsabs.harvard.edu/abs/2003SPD....34.2604H

    Article  ADS  Google Scholar 

  13. Hayakawa, H., Ebihara, Y., Hand, D.P., et al.: Low-latitude Aurorae during the extreme space weather events in 1859. Astrophys. J. 869, 57 (2018)

    Article  ADS  Google Scholar 

  14. Hayakawa, H., Ebihara, Y., Cliver, E.W., et al.: The extreme space weather event in September 1909. Mon. Not. R. Astron. Soc. 484, 4083–4099 (2019a)

    Article  ADS  Google Scholar 

  15. Hayakawa, H., Ebihara, Y., Willis, D.M., Toriumi, S., Iju, T., Hattori, K., et al.: Temporal and Spatial Evolutions of a Large Sunspot Group and Great Auroral Storms around the Carrington Event in 1859. Space Weather 17 (2019). https://doi.org/10.1029/2019SW002269

  16. Kopp, G., Lawrence, G., Rottman, G.: The Total Irradiance Monitor (TIM): Science results. Sol. Phys. 20(1–2), 129–139 (2005). https://doi.org/10.1007/s11207-005-7433-9

    Article  ADS  Google Scholar 

  17. Li, K.J., Yun, H.S., Gu, X.M.: Hemispheric variation in solar activity. Astrophys. J. 554, L115–L117 (2001a). https://doi.org/10.1086/320914

    Article  ADS  Google Scholar 

  18. Li, K.J., Yun, H.S., Gu, X.M.: Latitude migration of sunspot groups. Astron. J. 122(4), 2115–2117 (2001b). https://doi.org/10.1086/323089

    Article  ADS  Google Scholar 

  19. Loomis, E.: Am. J. Sci. Arts (2) 28, 385 (1859)

    Google Scholar 

  20. Mahrous, A., Shaltout, M., Beheary, M.M., Mawad, R., Youssef, M.: CME-flare association during the 23rd solar cycle. Adv. Space Res. 43(7), 1032–1035 (2009). https://doi.org/10.1016/j.asr.2009.01.028

    Article  ADS  Google Scholar 

  21. Mawad, R., Farid, H.M., Youssef, M., Yousef, S.: Empirical CME-SSC listing model. J. Mod. Trends Phys. R. 14, 130–136 (2014). https://doi.org/10.19138/mtpr/(14)130-136

    Article  Google Scholar 

  22. Mawad, R., Shaltout, M., Youssef, M., Yousef, S., Ewaida, M.: Filaments disappearance in relation to coronal mass ejections during the Solar Cycle 23. Adv. Space Res. 55(2), 688–695 (2015). https://doi.org/10.1016/j.asr.2014.11.002

    Article  ADS  Google Scholar 

  23. Norton, A.A., Raouafi, N.-E.: The tilted solar dipole: Coronal streamer and polar cap geometry observed near solar minimum. In: Proceedings of the Conference Held 16-20 April 2007 at the National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, USA. Subsurface and Atmospheric Influences on Solar Activity ASP Conference Series, vol. 383, p. 405. Astronomical Society of the Pacific, San Francisco (2007). http://adsabs.harvard.edu/abs/2008ASPC..383..405N

    Google Scholar 

  24. Pandey, K.K., Yellaiah, G., Hiremath, K.M.: Latitudinal distribution of soft X-ray flares and disparity in butterfly diagram. Astrophys. Space Sci. 356(2), 215–224 (2015). https://doi.org/10.1007/s10509-014-2148-8

    Article  ADS  Google Scholar 

  25. Papagiannis, M.D., Zerefos, C.S., Repapis, C.C.: The time-latitude distribution of solar flares accompanied by type IV radio bursts during the period 1956 to 1969. Sol. Phys. 27(1), 208–216 (1972). https://doi.org/10.1007/BF00151785

    Article  ADS  Google Scholar 

  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  27. Schrijver, C.J., Siscoe, G.L. (eds.): Heliophysics: Space Storms and Radiation: Causes and Effects p. 375. Cambridge University Press, Cambridge (2010). ISBN 1107049040. http://adsabs.harvard.edu/abs/2010heli.book.....S

    Google Scholar 

  28. Stewart, B.: On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at the Kew Observatory. Philos. Trans. R. Soc. Lond. 151, 423–430 (1861). http://adsabs.harvard.edu/abs/1861RSPT..151..423S

    ADS  Google Scholar 

  29. Thompson, W.T.: Coordinate systems for solar image data. Astron. Astrophys. 449(2), 791–803 (2006). https://doi.org/10.1051/0004-6361:20054262

    Article  ADS  Google Scholar 

  30. Tlatov, A.G., Makarova, V.V., Skorbezh, N.N., Muñoz Jaramillo, A.: Kislovodsk Mountain Astronomical Station (KMAS) Sunspot Group Data v2 (Harvard Dataverse) (2017). https://doi.org/10.7910/DVN/M7NDXN

  31. Usoskin, I.G., Kovaltsov, G.A.: Occurrence of extreme solar particle events: Assessment from historical proxy data. Astrophys. J. 757, 92 (2012)

    Article  ADS  Google Scholar 

  32. Wilson, R.M.: On the distribution of sunspot cycle periods. J. Geophys. Res. 92, 10101–10104 (1987). NASA-supported research. https://doi.org/10.1029/JA092iA09p10101.

    Article  ADS  Google Scholar 

  33. Wilson, R.M., Hathaway, D.H., Reichmann, E.J.: On the behavior of the sunspot cycle near minimum. J. Geophys. Res. 101(A9), 19967–19972 (1996). https://doi.org/10.1029/96JA01820

    Article  ADS  Google Scholar 

  34. Youssef, M., Mawad, R., Shaltout, M.: A statistical study of post-flare-associated CME events. Adv. Space Res. 51(7), 1221–1229 (2013). https://doi.org/10.1016/j.asr.2012.10.007

    Article  ADS  Google Scholar 

  35. Zharkova, V.V., Zharkov, S.I.: Latitudinal and longitudinal distributions of sunspots and solar flare occurrence in the Cycle 23 from the solar feature catalogues. In: Marsch, E., Tsinganos, K., Marsden, R., Conroy, L. (eds.) Proceedings of the Second Solar Orbiter Workshop. ESA-SP 641. European Space Agency, Noordwijk (2007). ISBN 92-9291-205-2. http://adsabs.harvard.edu/abs/2007ESASP.641E..90Z

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramy Mawad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mawad, R., Abdel-Sattar, W. The eruptive latitude of the solar flares during the Carrington rotations (CR1986-CR2195). Astrophys Space Sci 364, 197 (2019). https://doi.org/10.1007/s10509-019-3683-0

Download citation

Keywords

  • Sun
  • Solar activity
  • Solar flare
  • Solar rotation
  • Carrington rotation