Skip to main content
Log in

Whistler mode waves for ring distribution with A.C. electric field in inner magnetosphere of Saturn

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Whistler mode waves can propagate upstream without collision impact. They are generated in these areas of vibration. They are known to play a crucial role in thermodynamics and electron acceleration. Sometimes, in some cases, they are seen as waves that strike the wavefront. Mercury, Earth, Venus and Saturn are the planets where whistlers have been recorded in the upstream regions. They are right handed waves and can be left-hand polarized in the frame of spacecraft due to the strong negative Doppler shift. The weaker Doppler shift owes to the large angle between magnetic field vectors at 10 AU (Astronomical unit) and the solar wind velocity. These waves propagate with an angle between 10 to 60 degrees to background magnetic field. In the present paper, we took an advantage of Cassini present in the Saturnian magnetosphere to explore the whistler mode wave’s importance. A dispersion relation for obliquely as well as for whistler waves propagating perpendicular to the magnetic field, has been applied to Saturnian magnetosphere. Using the observations made by Voyager and Cassini, growth rate has been determined for non-relativistic plasma. Whistler waves are excited by temperature anisotropy, where the vertical temperature is higher than the parallel temperature. The effect of electron density, temperature anisotropy, energy density with some other parameters on the growth of whistler mode emission is studied. The result is found to be in good agreement with observations. Whistler mode wave interaction with particles basically emphasizes on the increase (decrease) in the energy of resonant particles and this variation is related to the transfer of energy to (from) other resonant particle group where the wave is the mediator of the energization process. Due to the non-monotonic nature of the ring distribution, at vertical velocities, the magnification produced by this instability is larger than the typical bi-Maxwellian anisotropy distribution because the wave can maintain resonance over a longer portion of its orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acuna, M.H., Ness, N.F.: The magnetic field of Saturn: Pioneer 11 observations. Science 207(4429), 444 (1980)

    Article  ADS  Google Scholar 

  • Barkhausen, H.: Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinungen. Phys. Z. 20, 401–403 (1919)

    Google Scholar 

  • Bell, T.F., Ngo, H.D.: Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities. J. Geophys. Res. 95, 149–172 (1990)

    Article  ADS  Google Scholar 

  • Brinca, A.L., Tsurutani, B.T.: On the excitation of cyclotron harmonic waves by newborn heavy ions. J. Geophys. Res. 94(A5), 5467 (1989a)

    Article  ADS  Google Scholar 

  • Brinca, A.L., Tsurutani, B.T.: The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions. J. Geophys. Res. 94(A1), 3 (1989b)

    Article  ADS  Google Scholar 

  • Carpenter, D.L.: Remote sensing of magnetospheric plasma by means of whistler mode signals. Rev. Geophys. 26, 535–549 (1988)

    Article  ADS  Google Scholar 

  • Chernov, G.P.: Whistlers in the solar corona and their relevance to fine structures of type IV radio emission. Sol. Phys. 130, 75–82 (1990)

    Article  ADS  Google Scholar 

  • Coroniti, F.V., Kurth, W.S., Scarf, F.L., Krimigis, S.M., Kennel, C.F., Gurnett, D.A.: Whistler mode emissions in the Uranian radiation belts. J. Geophys. Res. 92, 15234–15248 (1987)

    Article  ADS  Google Scholar 

  • Cowley, S.W.H., Wright, D.M., Bunce, E.J., Carter, A.C., Dougherty, M.K., Giampieri, G., Nichols, J.D., Robinson, T.R.: Cassini observations of planetary-period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion. Geophys. Res. Lett. 33(7), L07104 (2006)

    Article  ADS  Google Scholar 

  • Davidson, R.C.: Kinetic waves and instabilities in a uniform plasma. In: Handbook of Plasma (1983)

    Google Scholar 

  • Davis, L. Jr., Smith, E.J.: A model of Saturn’s magnetic field based on all available data. J. Geophys. Res. 95(A9), 15257 (1990)

    Article  ADS  Google Scholar 

  • Eckersley, T.L.: Musical atmospherics. Nature 135, 104–105 (1935)

    Article  ADS  Google Scholar 

  • Frank, L.A., Burek, B.G., Ackerson, K.L., Wolfe, J.H., Mihalov, J.D.: Plasmas in Saturn’s magnetosphere. J. Geophys. Res. 85(A11), 5695 (1980a)

    Article  ADS  Google Scholar 

  • Frank, L.A., Burek, B.H., Ackerson, K.L., Wolfe, J.H., Mihafov, J.D.: Plasmas in Saturn’s magnetosphere. J. Geophys. Res. 85, 5695 (1980b)

    Article  ADS  Google Scholar 

  • Gabrel, V., Echim, M.: Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations. J. Geophys. Res. 121 (2016). https://doi.org/10.1002/2015JA021973

  • Gary, S.P., Madland, C.D.: Electromagnetic ion instabilities in a cometary environment. J. Geophys. Res. 93, 235 (1988)

    Article  ADS  Google Scholar 

  • Gary, S.P., Scime, E.E., Phillips, J.L., Feldman, W.C.: The whistler heat flux instability: threshold conditions in the solar wind. J. Geophys. Res. 99, 23391–23399 (1994)

    Article  ADS  Google Scholar 

  • Goldstein, M.L., Wong, N.K.: A theory for low-frequency waves observed at comet Ciiacobini-Zinner. J. Geophys. Res. 92, 469 (1987)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Kirchner, D.L., Hospodarsky, G.B., Averkamp, T.F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Bostrom, R., Gustafsson, G., Wahlund, J.-E., Aahlen, L., Rucker, H.O., Ladreiter, H.P., Macher, W., Woolliscroft, L.J.C., Alleyne, H., Kaiser, M.L., Desch, M.D., Farrell, W.M., Harvey, C.C., Louarn, P., Kellogg, P.J., Goetz, K., Pedersen, A.: The Cassini radio science investigation. Space Sci. Rev. 114, 395–463 (2004)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., et al.: Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255 (2005)

    Article  ADS  Google Scholar 

  • Hayakawa, M., Lefeuvre, F., Rauch, J.L.: On the system of Aureol-3 satellite direction finding for ionospheric and magnetospheric ELF waves. Trans. Inst. Electr. Inform. Comm. Eng. E 73, 942–951 (1990)

    Google Scholar 

  • Helliwell, R.A.: Whistlers and Related Ionospheric Phenomena. Stanford University Press, Stanford (1965)

    Google Scholar 

  • Inhester, B.A.: A drift-kinetic treatment of the parametric decay of large-amplitude Alfven waves. J. Geophys. Res. 95(A7), 10525 (1990)

    Article  ADS  Google Scholar 

  • Kaur, R., Pandey, R.S.: Study of whistler mode waves for ring distribution function in Saturn’s magnetosphere. Adv. Space Res. 59, 2434–2441 (2017)

    Article  ADS  Google Scholar 

  • Kennel, C.F., Petschek, H.E.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1–28 (1966)

    Article  ADS  Google Scholar 

  • Koons, H.C.: Whistlers and whistler-stimulated emissions in the outer magnetosphere. J. Geophys. Res. 90, 8547–8551 (1985)

    Article  ADS  Google Scholar 

  • Krimigis, S.M., et al.: Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev. 114, 233–329 (2004)

    Article  ADS  Google Scholar 

  • Kumar, S., Singh, S.K., Gwal, A.K.: Effect of upflowing field aligned electron beams on the electron cyclotron waves in the auroral magnetosphere. Pramana J. Phys. 68(4), 611 (2007)

    Article  ADS  Google Scholar 

  • Lee, Y.C., Kaw, P.K.: Parametric instabilities of ion cyclotron waves in a plasma. Phys. Fluids 15, 911 (1972)

    Article  ADS  Google Scholar 

  • Leisner, J.S., Russell, C.T., Dougherty, M.K., Blanco-Cano, X., Strangeway, R.J., Bertucci, C.: Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett. 33, L11101 (2006)

    Article  ADS  Google Scholar 

  • Lyons, L.R., Thorne, R.M., Kennel, C.F.: Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Persoon, A.M., Gurnett, D.A., Coates, A.J., Young, D.T.: Analysis of plasma waves observed within local plasma injections seen in Saturn’s magnetosphere. J. Geophys. Res. 113, A05213 (2008a)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Gurnett, D.A., Coates, A.J.: Analysis of plasma waves observed in the inner Saturn magnetosphere. Ann. Geophys. 26, 2631–2644 (2008b)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Ye, S.Y., Hoon, P.H., Santolik, O., Rymer, A.M., Gurnett, D.A., Coates, A.J.: Analysis of narrow band emission observed in the Saturn magnetosphere. J. Geophys. Res. 114, A06206 (2009)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Shprits, Y.Y., Horne, R.B., Woodfield, E.E., Hospodarsky, G.B., Gurnett, D.A.: Chorus, ECH and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J. Geophys. Res. 117, A12214 (2012)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Schippers, P., Katoh, Y., Leisner, J.S., Hospodarsky, G.B., Gurnett, D.A., Santolik, O.: Saturn chorus intensity variations. J. Geophys. Res. 118, 5592–5602 (2013)

    Article  Google Scholar 

  • Misra, K.D., Pandey, R.S.: Generation of whistler emissions by injection of hot electrons in the presence of perpendicular AC electric field. J. Geophys. Res. 100, 9405 (1995)

    Article  Google Scholar 

  • Nagano, I., Wu, X.-Y., Yagitani, S., Miyamura, K.: Unusual whistler with very large dispersion near the magnetopause: geotail observation and ray-tracing modeling. J. Geophys. Res. 103, 11827–11840 (1998)

    Article  ADS  Google Scholar 

  • Orlowski, D.S., Russell, C.T.: Comparison of properties of upstream whistlers at different planets. Adv. Space Res. 16, 137–141 (1995)

    Article  ADS  Google Scholar 

  • Pandey, R.S., Kaur, R.: Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere. New Astron. 40, 41–48 (2015a)

    Article  ADS  Google Scholar 

  • Pandey, R.S., Kaur, R.: Oblique electromagnetic electron cyclotron waves for kappa distribution with A.C field in planetary magnetosphere. Adv. Space Res. 56, 714–724 (2015b)

    Article  ADS  Google Scholar 

  • Pandey, R.S., Kaur, R.: Analytical study of whistler mode waves in presence of parallel D.C electric field for relativistic plasma in the magnetosphere of Uranus. Adv. Space Res. 58, 1417–1424 (2016)

    Article  ADS  Google Scholar 

  • Pandey, R.S., Misra, K.D.: Excitation of oblique whistler waves in magnetosphere and in interplanetary space at 1 A.U. Earth Planets Space 54, 159–165 (2002)

    Article  ADS  Google Scholar 

  • Potter, R.K.: Analysis of audio-frequency atmospherics. Proc. Inst. Radio Eng. 39, 1067 (1951)

    Google Scholar 

  • Rymer, A.M., et al.: Electron sources in Saturn’s magnetosphere. J. Geophys. Res. 112, A02201 (2007)

    Article  ADS  Google Scholar 

  • Sakamoto, K., Kasahara, Y., Kimura, I.: K-vector determination of whistler mode signals by using amplitude data obtained by a spacecraft borne instrument. IEEE Trans. Geosci. Remote Sens. 33, 528–534 (1995)

    Article  ADS  Google Scholar 

  • Sazhin, S.S., Hayakawa, M., Bullough, K.: Whistler diagnostics of magnetospheric parameters: a review. Ann. Geophys. 10, 293–308 (1992)

    ADS  Google Scholar 

  • Schippers, P., et al.: Multi-instrument analysis of electron populations in Saturn’s magnetosphere. J. Geophys. Res. 113, A07208 (2008)

    Article  ADS  Google Scholar 

  • Sharma, O.P., Patel, V.L.: Low-frequency electromagnetic waves driven by gyrotropic gyrating beams. J. Geophys. Res. 91, 1529 (1986)

    Article  ADS  Google Scholar 

  • Singh, R.P., Singh, A.K., Singh, D.K.: Plasmaspheric parameters as determined from whistler spectrograms: a review. J. Atmos. Sol.-Terr. Phys. 60, 495–508 (1998)

    Article  ADS  Google Scholar 

  • Sittler, E.C. Jr., Ogilvie, K.W., Scudder, J.D.: Survey of low energy plasma electrons in Saturn’s magnetosphere: Voyagers 1 and 2. J. Geophys. Res. 88, 8847–8870 (1983)

    Article  ADS  Google Scholar 

  • Smith, E.J., Davis, L. Jr., Jones, D.E., Coleman, P.J. Jr., Colburn, D.S., Dyal, P., Sonett, C.P.: Saturn’s magnetic field and magnetosphere. Science 207(4429), 407–410 (1980)

    Article  ADS  Google Scholar 

  • Sonwalkar, V.S., Inan, U.S., Bell, T.F., Helliwell, R.A., Chmyrev, V.M., Sobolev, Y.P., Ovcharenko, O.Y., Selegej, V.: Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a magnetospheric caustic and a duct. J. Geophys. Res. 99, 17511–17522 (1994)

    Article  ADS  Google Scholar 

  • Stenzel, R.L.: Whistler waves in space and laboratory plasmas. J. Geophys. Res. 14, 14379–14395 (1999)

    Article  ADS  Google Scholar 

  • Storey, L.R.O.: An investigation of whistling atmospherics. Philos. Trans. R. Soc. Lond. Ser. A 246, 113–141 (1953)

    Article  ADS  Google Scholar 

  • Strangeways, H.J.: Whistler leakage from narrow ducts. J. Atmos. Terr. Phys. JS, 455–462 (1986)

    Article  ADS  Google Scholar 

  • Thorne, R.M., Summers, D.: Kinetic instability of a gyrating ring distribution with application to satellite pickup in planetary magnetospheres. Planet. Space Sci. 37(5), 535–544 (1989)

    Article  ADS  Google Scholar 

  • Thorne, R.M., Tsurntani, B.T.: Resonant interaction between cometary ions and low frequency electromagnetic waves. Planet. Space Sci. 35, 1501 (1987)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Neubauer, F.M., Glassmeier, K.-H.: A new look at the nature of comet Halley’s LF electromagnetic waves: Giotto observations. Geophys. Res. Lett. 2, 3129–3132 (1997)

    Article  ADS  Google Scholar 

  • Umeda, T., Ashour-Abdalla, M., Schriver, D., Richard, R.L., Coroniti, F.V.: Particle-in-cell simulation of Maxwellian ring velocity distribution. J. Geophys. Res. 112, A04212 (2007)

    ADS  Google Scholar 

  • Vandas, M., Hellinger, P.: Linear dispersion properties of ring velocity distribution functions. Phys. Plasmas 22, 062107 (2015)

    Article  ADS  Google Scholar 

  • Wong, H.K., Goldstein, M.L.: Proton beam generation of whistler waves in the Earth’s foreshock. J. Geophys. Res. 92, 12419–12424 (1987)

    Article  ADS  Google Scholar 

  • Wu, C.S., Krauss-Varban, D., Huo, T.S.: A mirror instability associated with newly created ions in a moving plasma. J. Geophys. Res. 93, 11527 (1988)

    Article  ADS  Google Scholar 

  • Wu, C.S., Yoon, P.H., Freund, H.P.: A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities. Geophys. Res. Lett. 16(12), 1461 (1989)

    Article  ADS  Google Scholar 

  • Young, D.T., Berthelier, J.J., Blanc, M., et al.: Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307, 1262–1265 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chairman, Indian Space Research Organization (ISRO), Director and members of PLANEX program, ISRO, for the financial support. We are thankful to Dr. Ashok K. Chauhan (Founder President, Amity University), Dr. Atul Chauhan (President, Amity University) and Dr. Balvinder Shukla (Vice Chancellor, Amity University) for their immense encouragement. We also express our gratitude to the reviewers for their expert comments for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, J., Pandey, R.S. Whistler mode waves for ring distribution with A.C. electric field in inner magnetosphere of Saturn. Astrophys Space Sci 363, 249 (2018). https://doi.org/10.1007/s10509-018-3466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3466-z

Keywords

Navigation