Skip to main content
Log in

Modelling of charged satellite motion in Earth’s gravitational and magnetic fields

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this work Lagrange’s planetary equations for a charged satellite subjected to the Earth’s gravitational and magnetic force fields are solved. The Earth’s gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange’s planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Salam, F.A., Abd El-Bar, S.E., Rassem, M.: Fully analytical solution of the electromagnetic perturbations on the motion of the charged satellites in Earh’s magnetic field. Eur. Phys. J. Plus 132, 198 (2017). https://doi.org/10.1140/epjp/i2017-11500-3

    Article  Google Scholar 

  • Abdel-Aziz, Y.A.: Lorentz Force Effects on the Orbit of a Charged Artificial Satellite: A New Approach, Vol. 1. Applied Mathematical Sciences, vol. 31, pp. 1511–1518. Hikari, Rousse (2007)

    MATH  Google Scholar 

  • Abdel-Aziz, Y.A., Khalil, K.I.: Electromagnetic effects on the orbital motion of a charged spacecraft. Res. Astron. Astrophys. 14(5), 589–600 (2014). https://doi.org/10.1088/1674-4527/14/5/008

    Article  ADS  Google Scholar 

  • Aghav, S.T., Gangal, S.A.: Simplified orbit determination algorithm for low Earth orbit satellite using spaceborne GPS navigation sensor. Artif. Satell. 49(2), 81–99 (2014). https://doi.org/10.2478/arsa-2014-0007

    ADS  Google Scholar 

  • Ahmed, M.K.: On the normalization of perturbed Keplerian systems. Astron. J. 107(5), 1900 (1994)

    Article  ADS  Google Scholar 

  • Al-Bermani, M.J.F., Ali, A.A.H., Al-Hashmi, A.M., Baron, A.S.: Effects of atmospheric drag and zonal harmonic on Cosmos1484 satellite orbit. J. Kufa Phys. 4(2), 1 (2012)

    ADS  Google Scholar 

  • Atchison, J.A., Peck, M.A.: Lorentz-augmented jovian orbit insertion. J. Guid. Control Dyn. 32(2), 418–423 (2009)

    Article  ADS  Google Scholar 

  • Bell, W.W.: Special Functions for Scientists and Engineers. Van Nostrand, London (1968)

    MATH  Google Scholar 

  • Bezděk, A., Vokrouhlický, D.: Semianalytic theory of motion for close-Earth spherical satellites including drag and gravitational perturbations. Planet. Space Sci. 52, 1233–1249 (2004)

    Article  ADS  Google Scholar 

  • Bhardwaj, R., Sethi, M.: Resonance in satellite’s motion under air drag. Am. J. Appl. Sci. 3(12), 2184–2189 (2006)

    Article  Google Scholar 

  • Chen, W.Y., Jing, W.X.: Differential equations of relative motion under the influence of J2 perturbation and air drag. In: AIAA Space 2010 Conference & Exposition, Anaheim, CA, USA (2010)

    Google Scholar 

  • Delhaise, F.: Analytical treatment of air dragand Earth oblateness effects upon an artificial satellite. Celest. Mech. Dyn. Astron. 52, 85–103 (1991)

    Article  ADS  MATH  Google Scholar 

  • Gangestad, J.W., Pollock, G.E., Longuski, J.M.: Lagrange’s planetary equations for the motion of electrostatically charged spacecraft. Celest. Mech. Dyn. Astron. (2010). https://doi.org/10.1007/s10569-010-9297-z

    MathSciNet  MATH  Google Scholar 

  • Hassan, I.A., Hayman, Z.M., Basha, M.A.F.: Pre-solution of the perturbed motion of artificial satellite. In: Proc. First Middle East Africa IAU-Regional Meet, vol. 1, p. 1 (2008). https://doi.org/10.10107/977403330200167

    Google Scholar 

  • Khalil, K.H.I.: The drag exerted by an oblate rotating atmosphere on an artificial satellite. Appl. Math. Mech. 23, 1016 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Laplace, P.S.: Traitede Mecanique Celeste, Tom IV, Par 2. Courcier, Paris (1805)

    Google Scholar 

  • Lee, D., Springmann, J.C., Spangelo, S.C., Cutler, J.W.: Satellite dynamics simulator development using Lie group variational integrator. In: Proc. AIAA Modeling and Simulation Technologies Conference, Portland, Oregon, 08–11 August, 2011

    Google Scholar 

  • Li, L.-S.: Perturbation effect of the Coulomb drag on the orbital elements of the Earth satellite in the ionosphere. Acta Astronaut. 68, 717–721 (2011)

    Article  ADS  Google Scholar 

  • Li, L.-S.: Influence of the electric induction drag on the orbit of a charged satellite moving in the ionosphere (solution by the method of the average value). Astrophys. Space Sci. 361, 1 (2016). https://doi.org/10.1007/s10509-015-2583-1

    Article  ADS  MathSciNet  Google Scholar 

  • Newton, I.: Philosophiae Naturalis Principia Mathematica, Book II, Section IV, London (1687). English translation by F. Cajori, Newton’s Principia, University of California Press, Berkeley (1934)

  • Peck, M.A.: Prospects and challenges for Lorentz-augmented orbits. In: AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, AIAA Paper 2005-5995 (2005)

    Google Scholar 

  • Peck, M.A., Streetman, B., Saaj, C.M., Lappas, V.: Spacecraft formation flying using Lorentz forces. J. Br. Interplanet. Soc. 60, 263–267 (2007)

    ADS  Google Scholar 

  • Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Analysis of Lorentz spacecraft motion about Earth using the Hill-Clohessy-Wiltshire equations. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, AIAA Paper 2008-6762 (2008)

    Google Scholar 

  • Pollock, G.E., Gangestad, J.W., Longuski, J.M.: Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations. Acta Astronaut. 68, 204 (2011)

    Article  ADS  Google Scholar 

  • Reid, T., Misra, A.K.: Formation filght of satellites in the presence of atmospheric drag. J. Aero. Eng. Sci. Appl. III, 64 (2011)

    Google Scholar 

  • Streetman, B., Peck, M.A.: Gravity-assist maneuvers augmented by the Lorentz force. In: AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, AIAA Paper 2007-6846 (2007a)

    Google Scholar 

  • Streetman, B., Peck, M.A.: New synchronous orbits using the geomagnetic Lorentz force. J. Guid. Control Dyn. 30(6), 1677–1690 (2007b)

    Article  ADS  Google Scholar 

  • Streetman, B., Peck, M.A.: Gravity-assist maneuvers augmented by the Lorentz force. J. Guid. Control Dyn. 32(5), 1639–1647 (2009)

    Article  ADS  Google Scholar 

  • Xu, G., Tianhe, X., Chen, W., Yeh, T.: Analytical solution of a satellite orbit disturbed by atmospheric drag. Mon. Not. R. Astron. Soc. 410, 654 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Abd El-Bar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Bar, S.E., Abd El-Salam, F.A. Modelling of charged satellite motion in Earth’s gravitational and magnetic fields. Astrophys Space Sci 363, 89 (2018). https://doi.org/10.1007/s10509-018-3310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3310-5

Keywords

Navigation