Advertisement

A discrete spherical harmonics method for radiative transfer analysis in inhomogeneous polarized planar atmosphere

  • Romuald Tapimo
  • Hervé Thierry Tagne Kamdem
  • David Yemele
Original Article

Abstract

A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \(\vert \mu \vert \geq0.1 \) is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.

Keywords

Discrete ordinates Inhomogeneous atmosphere Radiative transfer Rayleigh and Mie scattering Polarized atmosphere Spherical harmonics 

References

  1. Ackerman, T.P., Stokes, G.M.: The atmospheric radiation measurement program. Phys. Today 56, 38 (2003) ADSCrossRefGoogle Scholar
  2. Barlakas, V., Macke, A., Wendisch, M.: SPARTA—Solver for polarized atmospheric radiative transfer applications: introduction and application to Saharan dust fields. J. Quant. Spectrosc. Radiat. Transf. 178, 77 (2016) ADSCrossRefGoogle Scholar
  3. Benassi, M., Garcia, R.D.M., Karp, A.H., Siewert, C.E.: A high-order spherical harmonics solution to the standard problem in radiative transfer. Astrophys. J. 280, 853 (1984) ADSCrossRefGoogle Scholar
  4. Benassi, M., Garcia, R.D.M., Siewert, C.E.: A generalized spherical harmonics solution basic to the scattering of the polarized light. Z. Angew. Math. Phys. 36, 70 (1985) MathSciNetCrossRefMATHGoogle Scholar
  5. Bohren, C.F., Clothiaux, E.E.: Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems. VCH, Weinheim (2006) CrossRefGoogle Scholar
  6. Budak, V.P., Korkin, S.V.: The vectorial radiative transfer equation problem in the small angle modification of the spherical harmonics method with the determination of the solution smooth part. In: Tsay, S.-C., Nakajima, T., Singh, R.P., Sridharan, R. (eds.) Remote Sensing of the Atmosphere and Clouds. Proc. of SPIE, vol. 6408, 64081I (2006) Google Scholar
  7. Budak, V.P., Zheltov, V.S., Lubenchenko, A.V., Freidlin, K.S., Shagalov, O.V.: A fast and accurate synthetic iteration-based algorithm for numerical simulation of radiative transfer in a turbid medium. Atmos. Ocean. Opt. 30(1), 70 (2017) CrossRefGoogle Scholar
  8. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960) MATHGoogle Scholar
  9. Collin, C., Pattanaik, S., LiKamWa, P., Bouatouch, K.: Discrete ordinate method for polarized light transport solution and subsurface BRDF computation. Comput. Graph. 45, 17 (2014) CrossRefGoogle Scholar
  10. Cornet, C., Labonnote, L.C., Szczap, F.: Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. J. Quant. Spectrosc. Radiat. Transf. 111, 174 (2010) ADSCrossRefGoogle Scholar
  11. Dave, J.: A direct solution of the spherical harmonics approximation to the radiative transfer equation for an arbitrary solar elevation. Part I: Theory. J. Atmos. Sci. 32, 790 (1975) ADSCrossRefGoogle Scholar
  12. De Rooij, W.A.: Reflection and transmission of polarized light by planetary atmospheres. Ph.D. thesis, Vrije Universiteit te Amsterdam (1985) Google Scholar
  13. Deirmendjian, D.: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (1969) Google Scholar
  14. Dombrovsky, L.A., Baillis, D.: Thermal Radiation in Disperse Systems: An Engineering Approach. Begell House, New York (2010) Google Scholar
  15. Evans, K.F.: Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonics spatial grid method. J. Atmos. Sci. 50(18), 3111 (1993) ADSCrossRefGoogle Scholar
  16. Evans, K.F., Stephens, G.L.: A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 46(5), 413 (1991) ADSCrossRefGoogle Scholar
  17. Garcia, R.D.M., Siewert, C.E.: A generalized spherical harmonics solution for radiative transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transf. 36(5), 401 (1986) ADSCrossRefGoogle Scholar
  18. Garcia, R.D.M., Siewert, C.E.: The \(\mbox{F}_{\mathrm{N}}\) method for radiative transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transf. 41(2), 117 (1989) ADSCrossRefGoogle Scholar
  19. Garcia, R.D.M., Siewert, C.E.: A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization. J. Quant. Spectrosc. Radiat. Transf. 112, 2801 (2011) ADSCrossRefGoogle Scholar
  20. Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527 (1974) ADSCrossRefGoogle Scholar
  21. Hovenier, J.W.: Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles. J. Atmos. Sci. 26, 488 (1969) ADSCrossRefGoogle Scholar
  22. Hovenier, J.W.: Multiple scattering of polarized light in planetary atmospheres. Astron. Astrophys. 13, 7 (1971) ADSGoogle Scholar
  23. Korkin, S.V., Lyapustin, A.I., Vladimir, V., Rozanov, V.V.: APC: a new code for atmospheric polarization computations. J. Quant. Spectrosc. Radiat. Transf. 127, 1 (2013) ADSCrossRefGoogle Scholar
  24. Marshak, A., Davis, A.: 3D Radiative Transfer in Cloudy Atmospheres. Springer, Berlin (2005) CrossRefGoogle Scholar
  25. Mishchenko, M.I.: The fast invariant imbedding method for polarized light: computational aspects and numerical results for Rayleigh scattering. J. Quant. Spectrosc. Radiat. Transf. 43(3), 163 (1990) ADSCrossRefGoogle Scholar
  26. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption, and Emission of Light by Small Particles. NASA Goddard Institute for Space Studies, New York (2004) Google Scholar
  27. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006) Google Scholar
  28. Muñoz, A.G., Mills, F.P.: Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: sampling of propagation directions in polarising media. J. Astrophys. Astron. 573, 1 (2015) Google Scholar
  29. Natraj, V., Li, K.F., Yung, Y.L.: Rayleigh scattering in planetary atmospheres: corrected tables through accurate computation of \(X \) and \(Y\) functions. Astrophys. J. 691, 909 (2009) CrossRefGoogle Scholar
  30. Rozanov, V.V., Kokhanovsky, A.A.: The solution of the vector radiative transfer equation using the discrete ordinates technique: selected applications. Atmos. Res. 79, 241 (2006) CrossRefGoogle Scholar
  31. Schulz, F.M., Stamnes, K., Weng, F.: VDISORT: an improved and generalized discrete ordinate method for polarized (vector) radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 61(1), 105 (1999) ADSCrossRefGoogle Scholar
  32. Shen, J., Tang, T., Wang, L-L.: Spectral Methods Algorithms, Analysis and Applications. Springer, Berlin (2011) MATHGoogle Scholar
  33. Siewert, C.E.: On the phase matrix basic to the scattering of polarized light. Astron. Astrophys. 109, 195 (1982) ADSMathSciNetGoogle Scholar
  34. Siewert, C.E., McCormick, N.J.: A particular solution for polarization calculations in radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 50(5), 513 (1993) Google Scholar
  35. Spurr, R.: LIDORT and VLIDORT: linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In: Kokhanovsky, A.A. (ed.) Light Scattering Reviews. Springer Praxis Books, vol. 3, pp. 229–275. Springer, Berlin (2008) CrossRefGoogle Scholar
  36. Stam, D.M., De Rooij, W.A., Cornet, G., Hovenier, J.W.: Integrating polarized light over a planetary disk applied to starlight reflected by extrasolar planets. J. Astrophys. Astron. 452, 669 (2006) CrossRefGoogle Scholar
  37. Stammes, K., Dale, H.: A new look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmosphere. II: intensities computations. J. Atmos. Sci. 38, 2696 (1981) ADSCrossRefGoogle Scholar
  38. van de Hulst, H.G.: Light Scattering by Small Particles. Dover, New York (1981) Google Scholar
  39. Vestrucci, P., Siewert, C.E.: A numerical evaluation of an analytical representation of the components in a Fourier decomposition of the phase matrix for the scattering of polarized light. J. Quant. Spectrosc. Radiat. Transf. 31(2), 177 (1984) ADSCrossRefGoogle Scholar
  40. Wauben, W.M.F., Hovenier, J.W.: Polarized radiation of an atmosphere containing randomly-oriented spheroids. J. Quant. Spectrosc. Radiat. Transf. 47(6), 491 (1992) ADSCrossRefGoogle Scholar
  41. Wauben, W.M.F., de Haan, J.F., Hovenier, J.W.: Low orders of scattering in a plane-parallel homogeneous atmosphere. Astron. Astrophys. 276, 589 (1993) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Mechanics & Modeling of Physics Systems, Department of Physics/Faculty of ScienceUniversity of Dschang, CameroonDschangCameroon

Personalised recommendations